ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dependence of the Occupation of Galaxies on the Halo Formation Time

92   0   0.0 ( 0 )
 نشر من قبل Guangtun Zhu
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Guangtun Zhu




اسأل ChatGPT حول البحث

We study the dependence of the galaxy contents within halos on the halo formation time using two galaxy formation models, one being a semianalytic model utilizing the halo assembly history from a high resolution N-body simulation and the other being a smoothed particle hydrodynamics simulation including radiative cooling, star formation, and energy feedback from galactic winds. We confirm the finding by Gao et al. that at fixed mass, the clustering of halos depends on the halo formation time, especially for low-mass halos. This age dependence of halo clustering makes it desirable to study the correlation between the occupation of galaxies within halos and the halo age. We find that, in halos of fixed mass, the number of satellite galaxies has a strong dependence on halo age, with fewer satellites in older halos. The youngest one-third of the halos can have an order of magnitude more satellites than the oldest one-third. For central galaxies, in halos that form earlier, they tend to have more stars and thus appear to be more luminous, and the dependence of their luminosity on halo age is not as strong as that of stellar mass. The results can be understood through the star formation history in halos and the merging of satellites onto central galaxies. The age dependence of the galaxy contents within halos would constitute an important ingredient in a more accurate halo-based model of galaxy clustering.



قيم البحث

اقرأ أيضاً

We investigate the dependence of dark matter halo clustering on halo formation time, density profile concentration, and subhalo occupation number, using high-resolution numerical simulations of a LCDM cosmology. We confirm results that halo clusterin g is a function of halo formation time, and that this trend depends on halo mass. For the first time, we show unequivocally that halo clustering is a function of halo concentration and show that the dependence of halo bias on concentration, mass, and redshift can be accurately parameterized in a simple way: b(c,M|z) = b(M|z) b(c|M/M*). The scaling between bias and concentration changes sign with the value of M/M*: high concentration (early forming) objects cluster more strongly for M <~ M* while low concentration (late forming) objects cluster more strongly for rare high-mass halos, M >~ M*. We show the first explicit demonstration that host dark halo clustering depends on the halo occupation number (of dark matter subhalos) and discuss implications for halo model calculations of dark matter power spectra and galaxy clustering statistics. The effect of these halo properties on clustering is strongest for early-forming dwarf-mass halos, which are significantly more clustered than typical halos of their mass. Our results suggest that isolated low-mass galaxies (e.g. low surface-brightness dwarfs) should have more slowly-rising rotation curves than their clustered counterparts, and may have consequences for the dearth of dwarf galaxies in voids. They also imply that self calibrating richness-selected cluster samples with their clustering properties might overestimate cluster masses and bias cosmological parameter estimation.
56 - Ravi K. Sheth 2004
A generic prediction of hierarchical gravitational clustering models is that the distribution of halo formation times should depend relatively strongly on halo mass, massive haloes forming more recently, and depend only weakly, if at all, on the larg e scale environment of the haloes. We present a novel test of this assumption which uses a statistic that proves to be particularly well-suited to detecting and quantifying weak correlations with environment. We find that close pairs of haloes form at slightly higher redshifts than do more widely separated halo pairs, suggesting that haloes in dense regions form at slightly earlier times than do haloes of the same mass in less dense regions. The environmental trends we find are useful for models which relate the properties of galaxies to the formation histories of the haloes which surround them.
The halo occupation distribution (HOD) describes the bias between galaxies and dark matter by specifying (a) the probability P(N|M) that a halo of virial mass M contains N galaxies of a particular class and (b) the relative distributions of galaxies and dark matter within halos. We calculate predicted HODs for a Lambda-CDM cosmological model using an SPH hydrodynamic simulation and a semi-analytic (SA) galaxy formation model. Although the two methods predict different galaxy mass functions, their HOD predictions agree remarkably well. For mass-selected samples, the mean occupation <N(M)> exhibits a sharp cutoff at low halo masses, a slowly rising plateau for <N>~1-2, and a more steeply rising high occupancy regime. At low <N>, the mean pair and triple counts are well below Poisson expectations, with important consequences for small scale behavior of 2- and 3-point correlation functions. The HOD depends strongly on galaxy age, with high mass halos populated mainly by old galaxies and low mass halos by young galaxies. The SPH simulation supports several simplifying assumptions about HOD bias: the most massive galaxy in a halo usually lies close to the center and moves near the halos mean velocity; satellite galaxies have the same radial profile and velocity dispersion as the dark matter; and the mean occupation at fixed halo mass is independent of the halos larger scale environment. By applying the SPH and SA HODs to a large volume N-body simulation, we show that both methods predict slight, observable departures from a power-law galaxy correlation function. The predicted HODs are closely tied to the underlying galaxy formation physics, they offer useful guidance to theoretical models of galaxy clustering, and they will be tested empirically by ongoing analyses of galaxy redshift surveys. (Shortened)
We analyze the halo occupation distribution (HOD), the probability for a halo of mass M to host a number of subhalos N, and two-point correlation function of galaxy-size dark matter halos using high-resolution dissipationless simulations of the conco rdance flat LCDM model. The halo samples include both the host halos and the subhalos, distinct gravitationally-bound halos within the virialized regions of larger host systems. We find that the first moment of the HOD, <N>(M), has a complicated shape consisting of a step, a shoulder, and a power law high-mass tail. The HOD can be described by a Poisson statistics at high halo masses but becomes sub-Poisson for <N><4. We show that the HOD can be understood as a combination of the probability for a halo of mass M to host a central galaxy and the probability to host a given number Ns of satellite galaxies. The former can be approximated by a step-like function, while the latter can be well approximated by a Poisson distribution, fully specified by its first moment <Ns>(M). We find that <Ns>~M^b with b~1 for a wide range of number densities, redshifts, and different power spectrum normalizations. This formulation provides a simple but accurate model for the halo occupation distribution found in simulations. At z=0, the two-point correlation function (CF) of galactic halos can be well fit by a power law down to ~100/h kpc with an amplitude and slope similar to those of observed galaxies. At redshifts z>~1, we find significant departures from the power-law shape of the CF at small scales. If the deviations are as strong as indicated by our results, the assumption of the single power law often used in observational analyses of high-redshift clustering is likely to bias the estimates of the correlation length and slope of the correlation function.
72 - Jaehong Park 2015
We investigate the clustering of Lyman-break galaxies (LBGs) at $zsim4$. Using the hierarchical galaxy formation model GALFORM, we predict, for the first time using a semi-analytical model with feedback from active galactic nuclei (AGN), the angular correlation function (ACF) of LBGs and find agreement within $3,sigma$ with new measurements of the ACF from surveys including the Hubble eXtreme Deep Field (XDF) and CANDELS field. Our simulations confirm the conclusion reached using independent models that although the predicted ACFs reproduce the trend of increased clustering with luminosity, the dependence is less strong than observed. We find that for the detection limits of the XDF field central LBGs at $zsim 4$ predominantly reside in haloes of mass $sim 10^{11}-10^{12}h^{-1}M_{rm odot}$ and that satellites reside in larger haloes of mass $sim 10^{12}-10^{13}h^{-1}M_{rm odot}$. The model predicts fewer bright satellite LBGs at $zsim4$ than is inferred from measurements of the ACF at small scales. By analysing the halo occupation distribution (HOD) predicted by the model, we find evidence that AGN feedback affects the HOD of central LBGs in massive haloes. This is a new high-redshift test of this important feedback mechanism. We investigate the effect of photometric errors in the observations on the ACF predictions. We find that the observational uncertainty in the galaxy luminosity reduces the clustering amplitude and that this effect increases towards faint galaxies, particularly on small scales. To compare properties of model with observed LBGs this uncertainty must be considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا