ﻻ يوجد ملخص باللغة العربية
Using 2D models of rotating stars, the interferometric measurements of alpha Eri and its fundamental parameters corrected for gravitational darkening effects we infer that the star might have a core rotating 2.7 times faster than the surface. We explore the consequences on spectral lines produced by surface differential rotation combined with the effects due to a kind of internal differential rotation with rotational energies higher than allowed for rigid rotation which induce geometrical deformations that do not distinguish strongly from those carried by the rigid rotation.
We continue our studies on stellar latitudinal differential rotation. The presented work is a sequel of the work of Reiners et al. who studied the spectral line broadening profile of hundreds of stars of spectral types A through G at high rotational
We have studied the optical spectra of a sample of 31 O- and early B-type stars in the Small Magellanic Cloud, 21 of which are associated with the young massive cluster NGC 346. Stellar parameters are determined using an automated fitting method. Com
To explore the physics of large-scale flows in solar-like stars, we perform 3D anelastic simulations of rotating convection for global models with stratification resembling the solar interior. The numerical method is based on an implicit large-eddy s
Rotational light modulation in Kepler photometry of K - A stars is used to estimate the absolute rotational shear. The rotation frequency spread in 2562 carefully selected stars with known rotation periods is measured using time-frequency diagrams. T
Rotation contributes to internal mixing processes and observed variability in massive stars. A significant number of binary stars are not in strict synchronous rotation, including all eccentric systems. This leads to a tidally induced and time-variab