ﻻ يوجد ملخص باللغة العربية
We characterize the mass-dependent evolution in a large sample of more than 8,000 galaxies using spectroscopic redshifts drawn from the DEEP2 Galaxy Redshift Survey in the range 0.4 < z < 1.4 and stellar masses calculated from K-band photometry obtained at Palomar Observatory. Using restframe (U-B) color and [OII] equivalent widths, we distinguish star-forming from passive populations in order to explore the nature of downsizing--a pattern in which the sites of active star formation shift from high mass galaxies at early times to lower mass systems at later epochs. Over the redshift range probed, we identify a mass limit, M_Q, above which star formation appears to be quenched. The physical mechanisms responsible for downsizing can thus be empirically quantified by charting the evolution in this threshold mass. We find that M_Q decreases with time by a factor of ~3 across the redshift range sampled according with a redshift dependence of (1+z)^3.5. To further constrain possible quenching mechanisms, we investigate how this downsizing signal depends on local galaxy environment. For the majority of galaxies in regions near the median density, there is no significant correlation between downsizing and environment. However, a trend is observed in the comparison between more extreme environments that are more than 3 times overdense or underdense relative to the median. Here, we find that downsizing is accelerated in overdense regions which host higher numbers of massive, early-type galaxies and fewer late-types as compared to the underdense regions. Our results significantly constrain recent suggestions for the origin of downsizing and indicate that the process for quenching star formation must, primarily, be internally driven. (Abridged)
We define a volume limited sample of over 14,000 early-type galaxies (ETGs) selected from data release six of the Sloan Digital Sky Survey. The density of environment of each galaxy is robustly measured. By comparing narrow band spectral line indices
We explore the mass-assembly and chemical enrichment histories of star forming galaxies by applying a population synthesis method to a sample of 84828 galaxies from the Sloan Digital Sky Survey Data Release 5. Our method decomposes the entire observe
We use the optical and near-infrared galaxy samples from the Munich Near-Infrared Cluster Survey (MUNICS), the FORS Deep Field (FDF) and GOODS-S to probe the stellar mass assembly history of field galaxies out to z ~ 5. Combining information on the g
By using the deepest available mid and far infrared surveys in the CANDELS, GOODS and COSMOS fields we study the evolution of the Main Sequence (MS) of star forming galaxies (SFGs) from z~0 to` ~2.5 at stellar masses larger than 10^{10} M_{odot}. The
We study the star formation and the mass assembly process of 0.3<=z<2.5 galaxies using their IR emission from MIPS 24um band. We used an updated version of the GOODS-MUSIC catalog, extended by the addition of mid-IR fluxes. We compared two different