ﻻ يوجد ملخص باللغة العربية
We report extensive radio and X-ray observations of SN 2003bg whose spectroscopic evolution shows a transition from a broad-lined Type Ic to a hydrogen-rich Type II and later to a typical hydrogen-poor Type Ibc. We show that the extraordinarily luminous radio emission is well described by a self-absorption dominated synchrotron spectrum while the observed X-ray emission at t~30 days is adequately fit by Inverse Compton scattering of the optical photons off of the synchrotron emitting electrons. Our radio model implies a sub-relativistic ejecta velocity, v ~ 0.24c, at t_0 ~ 10 days after the explosion which emphasizes that broad optical absorption lines do not imply relativistic ejecta. We find that the total energy of the radio emitting region evolves as E ~ 7.3 x 10^{48} (t/t_0)^{0.4} erg assuming equipartition of energy between relativistic electrons and magnetic fields (e_e=e_B=0.1). The circumstellar density is well described by a stellar wind profile with modest (factor of ~2) episodic density enhancements which produce abrupt achromatic flux variations. We estimate an average progenitor mass loss rate of M_dot ~ 3 x 10^{-4} solar masses per year (assuming a wind velocity of 1000 km/s), consistent with the observed values for Galactic Wolf-Rayet stars. Comparison with other events reveals that ~50% of radio supernovae show similar short timescale flux variations attributable to circumstellar density irregularities. Specifically, the radio light-curves of SN 2003bg are strikingly similar to those of the Type IIb SN 2001ig, suggestive of a common progenitor evolution. We conclude that their progenitors experienced quasi-periodic mass loss episodes just prior to the SN explosion. [ABRIDGED]
SN 2005kd is among the most luminous supernovae (SNe) to be discovered at X-ray wavelengths. We have re-analysed all good angular resolution (better than $20$ FWHM PSF) archival X-ray data for SN 2005kd. The data reveal an X-ray light curve that decr
We investigate the X-ray properties of the most luminous radio sources in the 3CR catalogue, in order to assess if they are similar to the most luminous radio quiet quasars, for instance in the X-ray normalization with respect to the optical luminosi
We present radio and X-ray observations of the nearby Type IIb Supernova 2013df in NGC4414 from 10 to 250 days after the explosion. The radio emission showed a peculiar soft-to-hard spectral evolution. We present a model in which inverse Compton cool
Observations of the Type II-P (plateau) Supernova (SN) 1999em and Type IIn (narrow emission line) SN 1998S have enabled estimation of the profile of the SN ejecta, the structure of the circumstellar medium (CSM) established by the pre-SN stellar wind
We report the results of 15 years of radio observations of the six historical supernovae (SNe) in M83 using the Very Large Array. We note the near linear decline in radio emission from SN 1957D, a type II SN, which remains a non-thermal radio emitter