ترغب بنشر مسار تعليمي؟ اضغط هنا

Abundances of refractory elements in the atmospheres of stars with extrasolar planets

54   0   0.0 ( 0 )
 نشر من قبل Gabriella Gilli
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Gilli




اسأل ChatGPT حول البحث

This work presents a uniform and homogeneous study of chemical abundances of refractory elements in 101 stars with and 94 without known planetary companions. We carry out an in-depth investigation of the abundances of Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Na, Mg and Al. The new comparison sample, spanning the metallicity range -0.70< [Fe/H]< 0.50, fills the gap that previously existed, mainly at high metallicities, in the number of stars without known planets. We used an enlarged set of data including new observations, especially for the field ``single comparison stars. The line list previously studied by other authors was improved: on average we analysed 90 spectral lines in every spectrum and carefully measured more than 16600 equivalent widths (EW) to calculate the abundances. We investigate possible differences between the chemical abundances of the two groups of stars, both with and without planets. The results are globally comparable to those obtained by other authors, and in most cases the abundance trends of planet-host stars are very similar to those of the comparison sample. This work represents a step towards the comprehension of recently discovered planetary systems. These results could also be useful for verifying galactic models at high metallicities and consequently improve our knowledge of stellar nucleosynthesis and galactic chemical evolution.



قيم البحث

اقرأ أيضاً

168 - Jeremy Bailey 2014
The last few years has seen a dramatic increase in the number of exoplanets known and in the range of methods for characterising their atmospheric properties. At the same time, new discoveries of increasingly cooler brown dwarfs have pushed down thei r temperature range which now extends down to Y-dwarfs of <300 K. Modelling of these atmospheres has required the development of new techniques to deal with the molecular chemistry and clouds in these objects. The atmospheres of brown dwarfs are relatively well understood, but some problems remain, in particular the behavior of clouds at the L/T transition. Observational data for exoplanet atmosphere characterization is largely limited to giant exoplanets that are hot because they are near to their star (hot Jupiters) or because they are young and still cooling. For these planets there is good evidence for the presence of CO and H2O absorptions in the IR. Sodium absorption is observed in a number of objects. Reflected light measurements show that some giant exoplanets are very dark, indicating a cloud free atmosphere. However, there is also good evidence for clouds and haze in some other planets. It is also well established that some highly irradiated planets have inflated radii, though the mechanism for this inflation is not yet clear. Some other issues in the composition and structure of giant exoplanet atmospheres such as the occurence of inverted temperature structures, the presence or absence of CO2 and CH4, and the occurrence of high C/O ratios are still the subject of investigation and debate.
The relative distribution of abundances of refractory, intermediate, and volatile elements in stars with planets can be an important tool for investigating the internal migration of a giant planet. This migration can lead to the accretion of planetes imals and the selective enrichment of the star with these elements. We report on a spectroscopic determination of the atmospheric parameters and chemical abundances of the parent stars in transiting planets CoRoT-2b and CoRoT-4b. Adding data for CoRoT-3 and CoRoT-5 from the literature, we find a flat distribution of the relative abundances as a function of their condensation temperatures. For CoRoT-2, the relatively high lithium abundance and intensity of its Li I resonance line permit us to propose an age of 120 Myr, making this stars one of the youngest stars with planets to date. We introduce a new methodology to investigate a relation between the abundances of these stars and the internal migration of their planets. By simulating the internal migration of a planet in a disk formed only by planetesimals, we are able to separate the stellar fractions of refractory (R), intermediate (I), and volatile (V) rich planetesimals accreting onto the central star. Intermediate and volatile element fractions enriching the star are similar and much larger than those of pure refractory ones. We also show that these results are highly dependent on the model adopted for the disk distribution regions in terms of R, I, and V elements and other parameters considered. We note however, that this self-enrichment mechanism is only efficient during the first 20-30 Myr or later in the lifetime of the disk when the surface convection layers of the central star for the first time attain its minimum size configuration.
91 - G. Gonzalez , C. Laws 1999
The results of a new spectroscopic analysis of HD75289, recently reported to harbor a Jovian-mass planet, are presented. From high-resolution, high-S/N ratio spectra, we derive [Fe/H] = +0.28 +/- 0.05 for this star, in agreement with the spectroscopi c study of Gratton et al., published 10 years ago. In addition, we present a re-analysis of the spectra of Upsilon And and Tau Boo; our new parameters for these two stars are now in better agreement with photometrically-derived values and with the recent spectroscopic analyses of Fuhrmann, et al. We also report on extended abundance analyses of 14 Her, HD187123, HD210277, and Rho Cnc. If we include the recent spectroscopic analyses of HD217107 by Randich et al. and Sadakane et al., who both reported [Fe/H] ~ +0.30 for this star, we can state that all the hot-Jupiter systems studied to date have metal-rich parent stars. We find that the mean [C/Fe] and [Na/Fe] values among the stars-with-planets sample are smaller than the corresponding quantities among field stars of the same [Fe/H].
The Be II 3131 A doublet has been observed in the solar-type stars 16 Cyg A & B and in the late G-type star rho 1 Cnc, to derive their beryllium abundances. 16 Cyg A & B show similar (solar) beryllium abundances while 16 Cyg B, which has been propose d to have a planetary companion of ~2 M_Jup, is known to be depleted in lithium by a factor larger than 6 with respect to 16 Cyg A. Differences in their rotational histories which could induce different rates of internal mixing of material, and the ingestion of a similar planet by 16 Cyg A are discussed as potential explanations. The existence of two other solar-type stars which are candidates to harbour planetary-mass companions and which show lithium and beryllium abundances close to those of 16 Cyg A, requires a more detailed inspection of the peculiarities of the 16 Cyg system. For rho 1 Cnc, which is the coolest known object candidate to harbour a planetary-mass companion (M > 0.85 M_Jup), we establish a precise upper limit for its beryllium abundance, showing a strong Be depletion which constrains the available mixing mechanisms. Observations of similar stars without companions are required to asses the potential effects of the planetary companion on the observed depletion. It has been recently claimed that rho 1 Cnc appears to be a subgiant. If this were the case, the observed strong Li and Be depletions could be explained by a dilution process taking place during its post-main sequence evolution.
We analyzed the behavior of the rotational velocity in the parent stars of extrasolar planets. Projected rotational velocity v sin i and angular momentum were combined with stellar and planetary parameters, for a unique sample of 147 stars, amounting to 184 extrasolar planets, including 25 multiple systems. Indeed, for the present working sample we considered only stars with planets detected by the radial-velocity procedure. Our analysis shows that the v sin i distribution of stars with planets along the HR Diagram follows the well established scenario for the rotation of intermediate to low main sequence stars, with a sudden decline in rotation near 1.2 Msun. The decline occurs around Teff ~ 6000 K, corresponding to the late-F spectral region. A statistical comparison of the distribution of the rotation of stars with planets and a sample of stars without planets indicates that the v sin i distribution for these two families of stars is drawn from the same population distribution function. We also found that the angular momentum of extrasolar planet parent stars follows, at least qualitatively, Krafts relation J alpha (M/Msun)^{alpha}. The stars without detected planets show a clear trend of angular momentum deficit compared to the stars with planets, in particular for masses higher than about 1.25 Msun. Stars with the largest mass planets tend to have angular momentum comparable to or higher than the Sun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا