ﻻ يوجد ملخص باللغة العربية
Gamma-ray bursts (GRBs) and their afterglows have been proposed as an excellent probe to study the evolution of cosmic star formation, the reionization of the intergalactic medium, and the metal enrichment history of the universe, since the prompt gamma-ray emission of GRBs should be detectable out to distances z>10. Hitherto, the highest measured redshift for a GRB has been z=4.50. Here we report the optical spectrum of the afterglow of GRB 050904 obtained 3.4 days after the burst. The spectrum shows a clear continuum at the long wavelength end of the spectrum with a sharp cutoff at around 9000 A due to Ly alpha absorption at a redshift of 6.3 with a damping wing. Little flux is present in the waveband shortward of the Ly alpha break. A system of absorption lines of heavy elements at redshift z=6.295 +- 0.002 were also detected, yielding a precise measurement of the largest known redshift of a GRB. Analysis of the Si II fine structure lines suggest a dense metal-enriched environment around the GRB progenitor, providing unique information on the properties of the gas in a galaxy when the universe was younger than one billion years.
We discuss the formation of spectral features in the decelerating ejecta of gamma-ray bursts, including the possible effect of inhomogeneities. These should lead to blueshifted and broadened absorption edges and resonant features, especially from H a
The detection of GeV photons from gamma-ray bursts (GRBs) has important consequences for the interpretation and modelling of these most-energetic cosmological explosions. The full exploitation of the high-energy measurements relies, however, on the a
Afterglow, or long-lived emission, has now been detected from about a dozen well-positioned gamma-ray bursts. Distance determinations made by measuring optical emission lines from the host galaxy, or absorption lines in the afterglow spectrum, place
We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift UltraViolet/Optical T
We report the optical polarization of a gamma ray burst (GRB) afterglow, obtained 203 seconds after the initial burst of gamma rays from GRB 060418, using a ring polarimeter on the robotic Liverpool Telescope. Our robust (2-sigma) upper limit on the