Many strong gravitational lenses lie in complex environments, such as poor groups of galaxies, that significantly bias conclusions from lens analyses. We are undertaking a photometric survey of all known galaxy-mass strong lenses to characterize their environments and include them in careful lens modeling, and to build a large, uniform sample of galaxy groups at intermediate redshifts for evolutionary studies. In this paper we present wide-field photometry of the environments of twelve lens systems with 0.24 < z_lens < 0.5. Using a red-sequence identifying technique, we find that eight of the twelve lenses lie in groups, and that ten group-like structures are projected along the line of sight towards seven of these lenses. Follow-up spectroscopy of a subset of these fields confirms these results. For lenses in groups, the group centroid position is consistent with the direction of the external tidal shear required by lens models. Lens galaxies are not all super-L_* ellipticals; the median lens luminosity is < L_*, and the distribution of lens luminosities extends 3 magnitudes below L_* (in agreement with theoretical models). Only two of the lenses in groups are the brightest group galaxy, in qualitative agreement with theoretical predictions. As in the local Universe, the highest velocity-dispersion groups contain a brightest member spatially coincident with the group centroid, whereas lower-dispersion groups tend to have an offset brightest group galaxy. This suggests that higher-dispersion groups are more dynamically relaxed than lower-dispersion groups and that at least some evolved groups exist by z ~ 0.5.