ﻻ يوجد ملخص باللغة العربية
The lightcurves of variable DA stars are usually multi-periodic and non-sinusoidal, so that their Fourier transforms show peaks at eigenfrequencies of the pulsation modes and at sums and differences of these frequencies. These combination frequencies provide extra information about the pulsations, both physical and geometrical, that is lost unless they are analyzed. Several theories provide a context for this analysis by predicting combination frequency amplitudes. In these theories, the combination frequencies arise from nonlinear mixing of oscillation modes in the outer layers of the white dwarf, so their analysis cannot yield direct information on the global structure of the star as eigenmodes provide. However, their sensitivity to mode geometry does make them a useful tool for identifying the spherical degree of the modes that mix to produce them. In this paper, we analyze data from eight hot, low-amplitude DAV white dwarfs and measure the amplitudes of combination frequencies present. By comparing these amplitudes to the predictions of the theory of Goldreich & Wu, we have verified that the theory is crudely consistent with the measurements. We have also investigated to what extent the combination frequencies can be used to measure the spherical degree (ell) of the modes that produce them. We find that modes with ell > 2 are easily identifiable as high ell based on their combination frequencies alone. Distinguishing between ell=1 and 2 is also possible using harmonics. These results will be useful for conducting seismological analysis of large ensembles of ZZ Ceti stars, such as those being discovered using the Sloan Digital Sky Survey. Because this method relies only on photometry at optical wavelengths, it can be applied to faint stars using 4 m class telescopes.
There is a fairly tight correlation between the pulsation periods and effective temperatures of ZZ Ceti stars (cooler stars have longer periods). This seems to fit the theoretical picture, where driving occurs in the partial ionization zone, which li
We report the discovery of eleven new ZZ Cetis using telescopes at OPD (Observatorio do Pico dos Dias/LNA) in Brazil, the 4.1 m SOAR (Southern Astrophysical Research) telescope at Cerro Pachon, Chile, and the 2.1 m Otto Struve telescope at McDonald o
We combine all the reliably-measured eigenperiods for hot, short-period ZZ Ceti stars onto one diagram and show that it has the features expected from evolutionary and pulsation theory. To make a more detailed comparison with theory we concentrate on
We report on the discovery of six new ZZ Ceti stars. They were selected as candidates based on preparatory photometric observations of objects from the Hamburg Quasar Survey (HQS), and based on the spectra of the Supernova Ia Progenitor Survey (SPY).
Context. We continued our ground-based observing project with the season-long observations of ZZ Ceti stars at Konkoly Observatory. Our present targets are the newly discovered PM J22299+3024, and the already known LP 119-10 variables. LP 119-10 was