ترغب بنشر مسار تعليمي؟ اضغط هنا

C2D Spitzer-IRS spectra of disks around T Tauri stars: I. Silicate emission and grain growth

85   0   0.0 ( 0 )
 نشر من قبل Jacqueline Kessler-Silacci
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Infrared ~5--35 um spectra for 40 solar-mass T Tauri stars and 7 intermediate-mass Herbig Ae stars with circumstellar disks were obtained using the Spitzer Space Telescope as part of the c2d IRS survey. This work complements prior spectroscopic studies of silicate infrared emission from disks, which were focused on intermediate-mass stars, with observations of solar-mass stars limited primarily to the 10 um region. The observed 10 and 20 um silicate feature strengths/shapes are consistent with source-to-source variations in grain size. A large fraction of the features are weak and flat, consistent with um-sized grains indicating fast grain growth (from 0.1--1.0 um in radius). In addition, approximately half of the T Tauri star spectra show crystalline silicate features near 28 and 33 um indicating significant processing when compared to interstellar grains. A few sources show large 10-to-20 um ratios and require even larger grains emitting at 20 um than at 10 um. This size difference may arise from the difference in the depth into the disk probed by the two silicate emission bands in disks where dust settling has occurred. The 10 um feature strength vs. shape trend is not correlated with age or Halpha equivalent width, suggesting that some amount of turbulent mixing and regeneration of small grains is occurring. The strength vs. shape trend is related to spectral type, however, with M stars showing significantly flatter 10 um features (larger grain sizes) than A/B stars. The connection between spectral type and grain size is interpreted in terms of the variation in the silicate emission radius as a function of stellar luminosity, but could also be indicative of other spectral-type dependent factors (e.g, X-rays, UV radiation, stellar/disk winds, etc.).



قيم البحث

اقرأ أيضاً

Dust grains in the planet forming regions around young stars are expected to be heavily processed due to coagulation, fragmentation and crystallization. This paper focuses on the crystalline silicate dust grains in protoplanetary disks. As part of th e Cores to Disks Legacy Program, we obtained more than a hundred Spitzer/IRS spectra of TTauri stars. More than 3/4 of our objects show at least one crystalline silicate emission feature that can be essentially attributed to Mg-rich silicates. Observational properties of the crystalline features seen at lambda > 20 mu correlate with each other, while they are largely uncorrelated with the properties of the amorphous silicate 10 mu feature. This supports the idea that the IRS spectra essentially probe two independent disk regions: a warm zone (< 1 AU) emitting at lambda ~ 10 mu and a much colder region emitting at lambda > 20 mu (< 10 AU). We identify a crystallinity paradox, as the long-wavelength crystalline silicate features are 3.5 times more frequently detected (~55 % vs. ~15%) than the crystalline features arising from much warmer disk regions. This suggests that the disk has an inhomogeneous dust composition within ~10 AU. The abundant crystalline silicates found far from their presumed formation regions suggests efficient outward radial transport mechanisms in the disks. The analysis of the shape and strength of both the amorphous 10 mu feature and the crystalline feature around 23 mu provides evidence for the prevalence of micron-sized grains in upper layers of disks. Their presence in disk atmospheres suggests efficient vertical diffusion, likely accompanied by grain-grain fragmentation to balance the efficient growth expected. Finally, the depletion of submicron-sized grains points toward removal mechanisms such as stellar winds or radiation pressure.
Aims: We search for PAH features towards T Tauri stars and compare them with surveys of Herbig Ae/Be stars. The presence and strength of the PAH features are interpreted with disk radiative transfer models exploring the PAH feature dependence on the incident UV radiation, PAH abundance and disk parameters. Methods: Spitzer Space Telescope 5-35 micron spectra of 54 pre-main sequence stars with disks were obtained, consisting of 38 T Tauri, 7 Herbig Ae/Be and 9 stars with unknown spectral type. Results: Compact PAH emission is detected towards at least 8 sources of which 5 are Herbig Ae/Be stars. The 11.2 micron PAH feature is detected in all of these sources, as is the 6.2 micron PAH feature where short wavelength data are available. However, the 7.7 and 8.6 micron features appear strongly in only 1 of these 4 sources. PAH emission is observed towards at least 3 T Tauri stars (8% detection rate). The lowest mass source with PAHs in our sample is T Cha (G8). All 4 sources in our sample with evidence for dust holes in their inner disk show PAH emission, increasing the feature/continuum ratio. Typical 11.2 micron line intensities are an order of magnitude lower than those observed for the more massive Herbig Ae/Be stars. Measured line fluxes indicate PAH abundances that are factors of 10-100 lower than standard interstellar values. Conversely, PAH features from disks exposed to stars with Teff<=4200K without enhanced UV are predicted to be below the current detection limit, even for high PAH abundances. Disk modeling shows that the 6.2 and 11.2 micron features are the best PAH tracers for T Tauri stars, whereas the 7.7 and 8.6 micron bands have low feature over continuum ratios due to the strongly rising silicate emission.
CONTEXT - Low-mass stars form with disks in which the coagulation of grains may eventually lead to the formation of planets. It is not known when and where grain growth occurs, as models that explain the observations are often degenerate. A way to br eak this degeneracy is to resolve the sources under study. AIMS - To find evidence for the existence of grains of millimetre sizes in disks around in T Tauri stars, implying grain growth. METHODS - The Australia Telescope Compact Array (ATCA) was used to observe 15 southern T Tauri stars, five in the constellation Lupus and ten in Chamaeleon, at 3.3 millimetre. The five Lupus sources were also observed with the Submillimeter Array (SMA) at 1.4 millimetre. Our new data are complemented with data from the literature to determine the slopes of the spectral energy distributions in the millimetre regime. RESULTS - Ten sources were detected at better than 3sigma with the ATCA, with sigma ~1-2 mJy, and all sources that were observed with the SMA were detected at better than 15sigma, with sigma ~4 mJy. Six of the sources in our sample are resolved to physical radii of ~100 AU. Assuming that the emission from such large disks is predominantly optically thin, the millimetre slope can be related directly to the opacity index. For the other sources, the opacity indices are lower limits. Four out of six resolved sources have opacity indices <~1, indicating grain growth to millimetre sizes and larger. The masses of the disks range from < 0.01 to 0.08 MSun, which is comparable to the minimum mass solar nebula. A tentative correlation is found between the millimetre slope and the strength and shape of the 10-micron silicate feature, indicating that grain growth occurs on similar (short) timescales in both the inner and outer disk.
In this article we present the results from mid-infrared spectroscopy of a sample of 14 T Tauri stars with silicate emission. The qualitative analysis of the spectra reveals a correlation between the strength of the silicate feature and its shape sim ilar to the one which was found recently for the more massive Herbig Ae/Be stars by van Boekel et al. (2003). The comparison with theoretical spectra of amorphous olivine with different grain sizes suggests that this correlation is indicating grain growth in the disks of T Tauri stars. Similar mechanisms of grain processing appear to be effective in both groups of young stars.
We present 3.6 to 70 {mu}m Spitzer photometry of 154 weak-line T Tauri stars (WTTS) in the Chamaeleon, Lupus, Ophiuchus and Taurus star formation regions, all of which are within 200 pc of the Sun. For a comparative study, we also include 33 classica l T Tauri stars (CTTS) which are located in the same star forming regions. Spitzer sensitivities allow us to robustly detect the photosphere in the IRAC bands (3.6 to 8 {mu}m) and the 24 {mu}m MIPS band. In the 70 {mu}m MIPS band, we are able to detect dust emission brighter than roughly 40 times the photosphere. These observations represent the most sensitive WTTS survey in the mid to far infrared to date, and reveal the frequency of outer disks (r = 3-50 AU) around WTTS. The 70 {mu}m photometry for half the c2d WTTS sample (the on-cloud objects), which were not included in the earlier papers in this series, Padgett et al. (2006) and Cieza et al. (2007), are presented here for the first time. We find a disk frequency of 19% for on-cloud WTTS, but just 5% for off- cloud WTTS, similar to the value reported in the earlier works. WTTS exhibit spectral energy distributions (SEDs) that are quite diverse, spanning the range from optically thick to optically thin disks. Most disks become more tenuous than Ldisk/L* = 2 x 10^-3 in 2 Myr, and more tenuous than Ldisk/L* = 5 x 10^-4 in 4 Myr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا