ﻻ يوجد ملخص باللغة العربية
We revisit the dynamics of Prometheus and Pandora, two small moons flanking Saturns F ring. Departures of their orbits from freely precessing ellipses result from mutual interactions via their 121:118 mean motion resonance. Motions are chaotic because the resonance is split into four overlapping components. Orbital longitudes were observed to drift away from Voyager predictions, and a sudden jump in mean motions took place close to the time at which the orbits apses were antialigned in 2000. Numerical integrations reproduce both the longitude drifts and the jumps. The latter have been attributed to the greater strength of interactions near apse antialignment (every 6.2 years), and it has been assumed that this drift-jump behavior will continue indefinitely. We re-examine the dynamics by analogy with that of a nearly adiabatic, parametric pendulum. In terms of this analogy, the current value of the action of the satellite system is close to its maximum in the chaotic zone. Consequently, at present, the two separatrix crossings per precessional cycle occur close to apse antialignment. In this state libration only occurs when the potentials amplitude is nearly maximal, and the jumps in mean motion arise during the short intervals of libration that separate long stretches of circulation. Because chaotic systems explore the entire region of phase space available to them, we expect that at other times the system would be found in states of medium or low action. In a low action state it would spend most of the time in libration, and separatrix crossings would occur near apse alignment. We predict that transitions between these different states can happen in as little as a decade. Therefore, it is incorrect to assume that sudden changes in the orbits only happen near apse antialignment.
Pandora is a SmallSat mission designed to study the atmospheres of exoplanets, and was selected as part of NASAs Astrophysics Pioneers Program. Transmission spectroscopy of transiting exoplanets provides our best opportunity to identify the makeup of
In this work we demonstrate that the polycrystalline ribbons of (Ni48Co6)Mn26Al20 with B2 structure at room temperature show a magnetic behavior with competing magnetic exchange interactions leading to frozen disorders at low temperatures. It is esta
The human ability of deep cognitive skills are crucial for the development of various real-world applications that process diverse and abundant user generated input. While recent progress of deep learning and natural language processing have enabled
The behavior of self driving cars may differ from people expectations, (e.g. an autopilot may unexpectedly relinquish control). This expectation mismatch can cause potential and existing users to distrust self driving technology and can increase the
Understanding the merging behavior patterns at freeway on-ramps is important for assistanting the decisions of autonomous driving. This study develops a primitive-based framework to identify the driving patterns during merging processes and reveal th