ترغب بنشر مسار تعليمي؟ اضغط هنا

An anomalous concentration of QSOs around NGC 3079

128   0   0.0 ( 0 )
 نشر من قبل Dr. Geoffrey Burbidge
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is shown that there are at least 21 QSOs within 1 degree of the nearby active spiral galaxy NGC3079. Many of them are bright (mag<18) so that the surface density of those closer than 15 arc minutes to the galaxy centre is close to 100 times the average in the field. The probability that this is an accidental configuration is shown to be less or equal to one in a million. Discovery selection effects and microlensing fail by a large factor to explain the phenomenon, suggesting that the QSOs may lie in the same physical space as NGC3079. However, two of them make up the apparently lensed pair 0957+561A, B whose lensing galaxy lies at z=0.355. This problem is discussed in the concluding section.



قيم البحث

اقرأ أيضاً

We present new observations at three frequencies (326 MHz, 615 MHz, and 1281 MHz) of the radio lobe spiral galaxy, NGC 3079, using the Giant Metrewave Radio Telescope. These observations are consistent with previous data obtained at other telescopes and reveal the structure of the nuclear radio lobes in exquisite detail. In addition, new features are observed, some with HI counterparts, showing broad scale radio continuum emission and extensions. The galaxy is surrounded by a radio halo that is at least 4.8 kpc in height. Two giant radio extensions/loops are seen on either side of the galaxy out to $sim$ 11 kpc from the major axis, only slightly offset from the direction of the smaller nuclear radio lobes. If these are associated with the nuclear outflow, then the galaxy has experienced episodic nuclear activity. Emission along the southern major axis suggests motion through a local IGM (not yet detected) and it may be that NGC 3079 is itself creating this local intergalactic gas via outflows. We also present maps of the minimum energy parameters for this galaxy, including cosmic ray energy density, electron diffusion length, magnetic field strength, particle lifetime, and power.
63 - Naoko Iyomoto 2001
Using the BeppoSAX observatory, we have observed a nearby LINER/Seyfert 2 galaxy, NGC 3079, which is known as an outflow galaxy and a bright H_2O-maser source. Using the PDS detector, we have revealed that the NGC 3079 nucleus suffers from a Compton- thick absorption, with a hydrogen column density sim 10^{25} cm^{-2}. After corrected the absorption, the 2--10 keV luminosity becomes 10^{42-43} erg s^{-1} at a distance of 16 Mpc. It is 2-3 orders of magnitude higher than that observed in the MECS band (below 10 kev). We also detected a strong Fe-K line at 6.4^{+0.3}_{-0.2} keV with an equivalent width of 2.4^{+2.9}_{-1.5} keV, which is consistent with the heavy absorption.
81 - F.P. Israel 1998
Images in the J, H and K bands and in the the v=1-0 S(1) line of H2 of the central region of the almost edge-on galaxy NGC 3079 reveal contributions from direct and scattered starlight, emission from hot dust and molecular gas, and extinction gradien ts. The central 100 pc suffers an extinction of 6 mag. Extremely red near-infrared colours require the presence of hot dust at about 1000 K. Less reddened parts of the bulge require either a 20% J-band contribution from young stars in a stellar bar, or a 20-30% contribution from scattered stellar light. The nucleus is surrounded by a dense molecular disk of radius 300 pc. Emission from H2 and hot dust traces a cavity of radius 120 pc. In the central few hundred pc, HI spin temperatures must be less than 275 K and the CO-to_H2 conversion factor is at most 5% of the standard Galactic value. This is consistent with theoretical predictions for environments subjected to dissociative shocks, where reformation of H2 is impeded by high dust grain temperatures. The overall molecular gas content of NGC 3079 is normal for a late-type galaxy.
310 - N. Shafi 2009
Very deep neutral hydrogen (HI) observations of the edge-on spiral galaxy NGC 3079 with the Westerbork Synthesis Radio Telescope (WSRT) are presented. The galaxy has been studied extensively in different wavelengths and known for its several unique a nd complex features. However, the new data still revealed several new features and show that the galaxy is even more complicated and interesting than previously thought. In the new data a large stream of gas, encircling the entire galaxy, was discovered, while the data also show, for the first time, that not only hot gas is blown into space by the starburst/AGN, but also large amounts of cold gas, despite the high energies involved in the outflow.
Galactic winds are associated with intense star formation and AGNs. Depending on their formation mechanism and velocity they may remove a significant fraction of gas from their host galaxies, thus suppressing star formation, enriching the intergalact ic medium, and shaping the circumgalactic gas. However, the long-term evolution of these winds remains mostly unknown. We report the detection of a wind from NGC 3079 to at least 60 kpc from the galaxy. We detect the wind in FUV line emission to 60 kpc (as inferred from the broad FUV filter in GALEX) and in X-rays to at least 30~kpc. The morphology, luminosities, temperatures, and densities indicate that the emission comes from shocked material, and the O/Fe ratio implies that the X-ray emitting gas is enriched by Type II supernovae. If so, the speed inferred from simple shock models is about 500 km/s, which is sufficient to escape the galaxy. However, the inferred kinetic energy in the wind from visible components is substantially smaller than canonical hot superwind models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا