ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological constraints on f(R) gravity theories within the Palatini approach

74   0   0.0 ( 0 )
 نشر من قبل Morad Amarzguioui
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate f(R) theories of gravity within the Palatini approach and show how one can determine the expansion history, H(a), for an arbitrary choice of f(R). As an example, we consider cosmological constraints on such theories arising from the supernova type Ia, large scale structure formation and cosmic microwave background observations. We find that best fit to the data is a non-null leading order correction to the Einstein gravity, but the current data exhibits no significant preference over the concordance LCDM model. Our results show that the often considered 1/R models are not compatible with the data. The results demonstrate that the background expansion alone can act as a good discriminator between modified gravity models when multiple data sets are used.



قيم البحث

اقرأ أيضاً

We focus on a series of $f(R)$ gravity theories in Palatini formalism to investigate the probabilities of producing the late-time acceleration for the flat Friedmann-Robertson-Walker (FRW) universe. We apply statefinder diagnostic to these cosmologic al models for chosen series of parameters to see if they distinguish from one another. The diagnostic involves the statefinder pair ${r,s}$, where $r$ is derived from the scale factor $a$ and its higher derivatives with respect to the cosmic time $t$, and $s$ is expressed by $r$ and the deceleration parameter $q$. In conclusion, we find that although two types of $f(R)$ theories: (i) $f(R) = R + alpha R^m - beta R^{-n}$ and (ii) $f(R) = R + alpha ln R - beta$ can lead to late-time acceleration, their evolutionary trajectories in the $r-s$ and $r-q$ planes reveal different evolutionary properties, which certainly justify the merits of statefinder diagnostic. Additionally, we utilize the observational Hubble parameter data (OHD) to constrain these models of $f(R)$ gravity. As a result, except for $m=n=1/2$ of (i) case, $alpha=0$ of (i) case and (ii) case allow $Lambda$CDM model to exist in 1$sigma$ confidence region. After adopting statefinder diagnostic to the best-fit models, we find that all the best-fit models are capable of going through deceleration/acceleration transition stage with late-time acceleration epoch, and all these models turn to de-Sitter point (${r,s}={1,0}$) in the future. Also, the evolutionary differences between these models are distinct, especially in $r-s$ plane, which makes the statefinder diagnostic more reliable in discriminating cosmological models.
Over the last years some interest has been gathered by $f(Q)$ theories, which are new candidates to replace Einsteins prescription for gravity. The non-metricity tensor $Q$ allows to put forward the assumption of a free torsionless connection and, co nsequently, new degrees of freedom in the action are taken into account. This work focuses on a class of $f(Q)$ theories, characterized by the presence of a general power-law term which adds up to the standard (linear in) $Q$ term in the action, and on new cosmological scenarios arising from them. Using the Markov chain Montecarlo method we carry out statistical tests relying upon background data such as Type Ia Supernovae luminosities and direct Hubble data (from cosmic clocks), along with Cosmic Microwave Background shift and Baryon Acoustic Oscillations data. This allows us to perform a multifaceted comparison between these new cosmologies and the (concordance) $Lambda$CDM setup. We conclude that, at the current precision level, the best fits of our $f(Q)$ models correspond to values of their specific parameters which make them hardly distinguishable from our General Relativity echantillon, that is $Lambda$CDM.
We study stellar configurations and the space-time around them in metric $f(R)$ theories of gravity. In particular, we focus on the polytropic model of the Sun in the $f(R)=R-mu^4/R$ model. We show how the stellar configuration in the $f(R)$ theory c an, by appropriate initial conditions, be selected to be equal to that described by the Lane-Emden -equation and how a simple scaling relation exists between the solutions. We also derive the correct solution analytically near the center of the star in $f(R)$ theory. Previous analytical and numerical results are confirmed, indicating that the space-time around the Sun is incompatible with Solar System constraints on the properties of gravity. Numerical work shows that stellar configurations, with a regular metric at the center, lead to $gamma_{PPN}simeq1/2$ outside the star ie. the Schwarzschild-de Sitter -space-time is not the correct vacuum solution for such configurations. Conversely, by selecting the Schwarzschild-de Sitter -metric as the outside solution, we find that the stellar configuration is unchanged but the metric is irregular at the center. The possibility of constructing a $f(R)$ theory compatible with the Solar System experiments and possible new constraints arising from the radius-mass -relation of stellar objects is discussed.
$f(R)$ gravity, capable of driving the late-time acceleration of the universe, is emerging as a promising alternative to dark energy. Various $f(R)$ gravity models have been intensively tested against probes of the expansion history, including type I a supernovae (SNIa), the cosmic microwave background (CMB) and baryon acoustic oscillations (BAO). In this paper we propose to use the statistical lens sample from Sloan Digital Sky Survey Quasar Lens Search Data Release 3 (SQLS DR3) to constrain $f(R)$ gravity models. This sample can probe the expansion history up to $zsim2.2$, higher than what probed by current SNIa and BAO data. We adopt a typical parameterization of the form $f(R)=R-alpha H^2_0(-frac{R}{H^2_0})^beta$ with $alpha$ and $beta$ constants. For $beta=0$ ($Lambda$CDM), we obtain the best-fit value of the parameter $alpha=-4.193$, for which the 95% confidence interval that is [-4.633, -3.754]. This best-fit value of $alpha$ corresponds to the matter density parameter $Omega_{m0}=0.301$, consistent with constraints from other probes. Allowing $beta$ to be free, the best-fit parameters are $(alpha, beta)=(-3.777, 0.06195)$. Consequently, we give $Omega_{m0}=0.285$ and the deceleration parameter $q_0=-0.544$. At the 95% confidence level, $alpha$ and $beta$ are constrained to [-4.67, -2.89] and [-0.078, 0.202] respectively. Clearly, given the currently limited sample size, we can only constrain $beta$ within the accuracy of $Deltabetasim 0.1$ and thus can not distinguish between $Lambda$CDM and $f(R)$ gravity with high significance, and actually, the former lies in the 68% confidence contour. We expect that the extension of the SQLS DR3 lens sample to the SDSS DR5 and SDSS-II will make constraints on the model more stringent.
A new systematic approach extending the notion of frames to the Palatini scalar-tensor theories of gravity in various dimensions n>2 is proposed. We impose frame transformation induced by the group action which includes almost-geodesic and conformal transformations. We characterize theories invariant with respect to these transformations dividing them up into solution-equivalent subclasses (group orbits). To this end, invariant characteristics have been introduced. Unlike in the metric case, it turns out that the dimension four admitting the largest transformation group is rather special for such theories. The formalism provides new frames that incorporate non-metricity. The case of Palatini F(R)-gravity is considered in more detail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا