ﻻ يوجد ملخص باللغة العربية
The highly luminous (> 10^37 erg s^-1) supersoft X-ray sources (SSS) are believed to be Eddington limited accreting white dwarfs undergoing surface hydrogen burning. The current paradigm for SSS involves thermally unstable mass transfer from a 1-2 solar mass companion. However this model has never been directly confirmed and yet is crucial for the evolution of cataclysmic variables in general, and for the establishment of SSS as progenitors of type Ia supernovae in particular. The key SSS is RX J0513.9-6951 which has recurrent X-ray outbursts every 100-200 d (lasting for ~40 d) during which the optical declines by 1 mag. We present the first XMM-Newton observations of RX J0513.9-6951 through one of its optical low states. Our results show that as the optical low state progresses the temperature and the X-ray luminosity decrease, behaviour that is anti-correlated with the optical and UV emission. We find that as the optical (and UV) intensity recover the radius implied by the spectral fits increases. The high resolution spectra show evidence of deep absorption features which vary during the optical low state. Our results are consistent with the predictions of the white dwarf photospheric contraction model proposed by Southwell et al. 1996.
We have obtained spectroscopy with the Far Ultraviolet Spectroscopic Explorer (FUSE) of the supersoft X-ray binary RX J0513.9-6951 over a complete binary orbital cycle. The spectra show a hot continuum with extremely broad O VI emission and weak Lyma
The supersoft X-ray binary RX J0513.9-6951 shows cyclic changes between optical-low / X-ray-on states and optical-high / X-ray-off states. It is supposed to be accreting close to the Eddington-critical limit and driven by accretion wind evolution. We
FUSE observations were obtained in July 2003 during 1.2 cycles of the 0.76-day binary orbit of RX J0513.9-6951. Radial velocity measurements of the broad O VI emission profile show a semiamplitude of K~26 km/sec, which is much smaller than the value
We have analyzed nearly eight years of MACHO optical photometry of the supersoft X-ray binary RX J0513.9-6951 and derived a revised orbital period and ephemeris. Previously published velocities are reinterpreted using the new ephemeris. We show that
Context. Close binary supersoft X-ray sources (CBSS) are binary systems that contain a white dwarf with stable nuclear burning on its surface. These sources, first discovered in the Magellanic Clouds, have high accretion rates and near-Eddington lumi