ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Orbital Evolution of Low Mass Protoplanets in Turbulent, Magnetised Disks

89   0   0.0 ( 0 )
 نشر من قبل Richard P. Nelson
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Richard P. Nelson




اسأل ChatGPT حول البحث

(Abridged).We present the results of MHD simulations of low mass protoplanets interacting with turbulent disks. We calculate the orbital evolution of `planetesimals and protoplanets with masses in the range 0 < m_p < 30 M_Earth. Planetesimals and protoplanets undergo stochastic migration due to interaction with turbulent density fluctuations. Over run times of ~ 150 planet orbits, stochastic migration dominates over type I migration for many models. Fourier analysis of the torques experienced by planets indicates that the torque fluctuations contain components with significant power whose time scales of variation are similar to the simulation run times. These low frequency fluctuations partly explain the dominance of stochastic torques, and may provide a powerful means of counteracting the type I migration of some planets in turbulent disks. Turbulence is a source of eccentricity driving. Planetesimals attained eccentricities in the range 0.02 < e < 0.14, m_p=1 M_Earth planets attained eccentricities 0.02 < e < 0.08, and m_p=10 M_Earth protoplanets reached 0.02 < e < 0.03. This is in basic agreement with a model in which turbulence drives e-growth, and interaction with disk material at coorbital Lindblad resonances causes e-damping. These results are significant for planet formation. Stochastic migration may prevent some planet cores migrating into their star via type I before becoming gas giants. The growth of planetary cores may be enhanced by preventing isolation. Eccentricity excitation by turbulence, however, may reduce growth rates of planetary cores during the runaway and oligarchic growth stages, and cause collisions between planetesimals to become destructive.



قيم البحث

اقرأ أيضاً

101 - Frederic S. Masset 2017
Using linear perturbation theory, we investigate the torque exerted on a low-mass planet embedded in a gaseous protoplanetary disc with finite thermal diffusivity. When the planet does not release energy into the ambient disc, the main effect of ther mal diffusion is the softening of the enthalpy peak near the planet, which results in the appearance of two cold and dense lobes on either side of the orbit, of size smaller than the thickness of the disc. The lobes exert torques of opposite sign on the planet, each comparable in magnitude to the one-sided Lindblad torque. When the planet is offset from corotation, the lobes are asymmetric and the planet experiences a net torque, the `cold thermal torque, which has a magnitude that depends on the relative value of the distance to corotation to the size of the lobes $simsqrt{chi/Omega_p}$, $chi$ being the thermal diffusivity and $Omega_p$ the orbital frequency. We believe that this effect corresponds to the phenomenon named `cold finger recently reported in numerical simulations, and we argue that it constitutes the dominant mode of migration of sub-Earth-mass objects. When the planet is luminous, the heat released into the ambient disc results in an additional disturbance that takes the form of hot, low-density lobes. They give a torque, named heating torque in previous work, that has an expression similar, but of opposite sign, to the cold thermal torque.
The regular satellites found around Neptune ($approx 17~M_{Earth}$) and Uranus ($approx 14.5~M_{Earth}$) suggest that past gaseous circumplanetary disks may have co-existed with solids around sub-Neptune-mass protoplanets ($< 17~M_{Earth}$). These di sks have been shown to be cool, optically thin, quiescent, with low surface density and low viscosity. Numerical studies of the formation are difficult and technically challenging. As an introductory attempt, three-dimensional global simulations are performed to explore the formation of circumplanetary disks around sub-Neptune-mass protoplanets embedded within an isothermal protoplanetary disk at the inviscid limit of the fluid in the absence of self-gravity. Under such conditions, a sub-Neptune-mass protoplanet can reasonably have a rotationally supported circumplanetary disk. The size of the circumplanetary disk is found to be roughly one-tenth of the corresponding Hill radius, which is consistent with the orbital radii of irregular satellites found for Uranus. The protoplanetary gas accretes onto the circumplanetary disk vertically from high altitude and returns to the protoplanetary disk again near the midplane. This implies an open system in which the circumplanetary disk constantly exchanges angular momentum and material with its surrounding prenatal protoplanetary gas.
Observational evidence in space and astrophysical plasmas with long collisional mean free path suggests that more massive charged particles may be preferentially heated. One possible mechanism for this is the turbulent cascade of energy from injectio n to dissipation scales, where the energy is converted to heat. Here we consider a simple system consisting of a magnetized plasma slab of electrons and a single ion species with a cross-field density gradient. We show that such a system is subject to an electron drift wave instability, known as the universal instability, which is stabilized only when the electron and ion thermal speeds are equal. For unequal thermal speeds, we find that the instability gives rise to turbulent energy exchange between ions and electrons that acts to equalize the thermal speeds. Consequently, this turbulent heating tends to equalize the component temperatures of pair plasmas and to heat ions to much higher temperatures than electrons for conventional mass-ratio plasmas.
(Abridged) We consider models of gas giant planets forming in protoplanetary disks consisting of solid cores with gaseous envelopes in contact with their critical Hill spheres while accreting gas from the surrounding disk.We suppose the luminosity de rives from gas accretion alone.We label such models as type A and follow their evolution which may occur on a time scale similar to the protostellar disk lifetime until rapid gas accretion. We consider another set of models, we label type B, with a free surface, powered by gravitational contraction, while accreting through a disk.We find these models rapidly attain a radius <~ 2x10^(10)cm without subsequent expansion.We speculate that giant planet formation is initially described by models of type A, until at the onset of rapid gas accretion, there is a transition to models of type B. Protoplanet migration in standard models tends to be most effective near this transition where it also changes from type I to type II.If a mechanism prevents type I migration of low mass protoplanets, a rapid inward migration might occur near the transitional mass regime. Such protoplanets would end up in the inner disk regions undergoing type II migration and further accretion potentially becoming sub Jovian close orbiting planets. Noting that dustier more massive cores spend longer at a larger transitional mass where faster migration is expected, these may be more prone to end in close orbiters.We find the luminosity of the protoplanets during the later stages is dominated by the circumplanetary disk and protoplanet disk boundary layer.For one Jupiter mass the luminosity range is 10^-(1.5-4) L_sun$ depending on the evolutionary stage and external conditions.
We present a new set of analytic models for the expansion of HII regions powered by UV photoionisation from massive stars and compare them to a new suite of radiative magnetohydrodynamic simulations of turbulent, self-gravitating molecular clouds. To perform these simulations we use the Eulerian adaptive mesh magnetohydrodynamics code RAMSES-RT, including radiative transfer of UV photons. Our analytic models successfully predict the global behaviour of the HII region provided the density and velocity structure of the cloud is known. We give estimates for the HII region behaviour based on a power law fit to the density field assuming that the system is virialised. We give a radius at which the ionisation front should stop expanding (stall). If this radius is smaller than the distance to the edge of the cloud, the HII region will be trapped by the cloud. This effect is more severe in collapsing clouds than in virialised clouds, since the density in the former increases dramatically over time, with much larger photon emission rates needed for the HII region to escape a collapsing cloud. We also measure the response of Jeans unstable gas to the HII regions to predict the impact of UV radiation on star formation in the cloud. We find that the mass in unstable gas can be explained by a model in which the clouds are evaporated by UV photons, suggesting that the net feedback on star formation should be negative
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا