ﻻ يوجد ملخص باللغة العربية
(Abridged).We present the results of MHD simulations of low mass protoplanets interacting with turbulent disks. We calculate the orbital evolution of `planetesimals and protoplanets with masses in the range 0 < m_p < 30 M_Earth. Planetesimals and protoplanets undergo stochastic migration due to interaction with turbulent density fluctuations. Over run times of ~ 150 planet orbits, stochastic migration dominates over type I migration for many models. Fourier analysis of the torques experienced by planets indicates that the torque fluctuations contain components with significant power whose time scales of variation are similar to the simulation run times. These low frequency fluctuations partly explain the dominance of stochastic torques, and may provide a powerful means of counteracting the type I migration of some planets in turbulent disks. Turbulence is a source of eccentricity driving. Planetesimals attained eccentricities in the range 0.02 < e < 0.14, m_p=1 M_Earth planets attained eccentricities 0.02 < e < 0.08, and m_p=10 M_Earth protoplanets reached 0.02 < e < 0.03. This is in basic agreement with a model in which turbulence drives e-growth, and interaction with disk material at coorbital Lindblad resonances causes e-damping. These results are significant for planet formation. Stochastic migration may prevent some planet cores migrating into their star via type I before becoming gas giants. The growth of planetary cores may be enhanced by preventing isolation. Eccentricity excitation by turbulence, however, may reduce growth rates of planetary cores during the runaway and oligarchic growth stages, and cause collisions between planetesimals to become destructive.
Using linear perturbation theory, we investigate the torque exerted on a low-mass planet embedded in a gaseous protoplanetary disc with finite thermal diffusivity. When the planet does not release energy into the ambient disc, the main effect of ther
The regular satellites found around Neptune ($approx 17~M_{Earth}$) and Uranus ($approx 14.5~M_{Earth}$) suggest that past gaseous circumplanetary disks may have co-existed with solids around sub-Neptune-mass protoplanets ($< 17~M_{Earth}$). These di
Observational evidence in space and astrophysical plasmas with long collisional mean free path suggests that more massive charged particles may be preferentially heated. One possible mechanism for this is the turbulent cascade of energy from injectio
(Abridged) We consider models of gas giant planets forming in protoplanetary disks consisting of solid cores with gaseous envelopes in contact with their critical Hill spheres while accreting gas from the surrounding disk.We suppose the luminosity de
We present a new set of analytic models for the expansion of HII regions powered by UV photoionisation from massive stars and compare them to a new suite of radiative magnetohydrodynamic simulations of turbulent, self-gravitating molecular clouds. To