ﻻ يوجد ملخص باللغة العربية
Using simultaneous observations from Chandra and RXTE, we investigated the LMXB GS 1826-238 with the goal of studying its spectral and timing properties. The uninterrupted Chandra observation captured 6 bursts (RXTE saw 3 of the 6), yielding a recurrence time of 3.54 +/- 0.03 hr. Using the proportional counter array on board RXTE, we made a probable detection of 611 Hz burst oscillations in the decaying phases of the bursts with an average rms signal amplitude of 4.8%. The integrated persistent emission spectrum can be described as the dual Comptonization of ~ 0.3 keV soft photons by a plasma with kT_e ~ 20 keV and an optical depth of about 2.6 (interpreted as emission from the accretion disk corona), plus the Comptonization of hotter ~ 0.8 keV seed photons by a ~ 6.8 keV plasma (interpreted as emission from or near the boundary layer). We discovered evidence for a neutral Fe Kalpha emission line, and we found interstellar Fe L_II and Fe L_III absorption features. The burst spectrum can be fit by fixing the disk Comptonization parameters to the persistent emission best-fit values, and adding a blackbody. The blackbody/seed photon temperature at the peak of the burst is ~ 1.8 keV and returns to ~ 0.8 keV over 200 s. The blackbody radius is consistent with R_bb = 10.3-11.7 km assuming a distance of 6 kpc; however, by accounting for the fraction of the surface that is obscured by the disk as a function of binary inclination, we determined the source distance must actually be near 5 kpc in order for the stellar radius to lie within the commonly assumed range of 10-12 km.
GS 1826-238 is a well-studied X-ray bursting neutron star in a low mass binary system. Thermal Comptonisation by a hot electron cloud is a widely accepted mechanism accounting for its high energy emission, while the nature of most of its soft X-ray o
Type-I X-ray bursts on the surface of a neutron star are a unique probe to the accretion in X-ray binary systems. However, we know little about the feedback of the burst emission upon accretion. Hard X-ray shortages and enhancements of the persistent
The low-mass X-ray binary GS 1826-238 is presently unique for its consistently regular bursting behavior. In previous Rossi X-Ray Timing Explorer (RXTE) measurements between 1997 November and 2002 July, this source exhibited (nearly) limit-cycle burs
We report on NuSTAR and Swift observations of a soft state of the neutron star low-mass X-ray binary GS 1826-24, commonly known as the clocked burster. The transition to the soft state was recorded in 2014 June through an increase of the 2-20 keV sou
We report results from the first simultaneous X-ray (RXTE) and optical (SAAO) observations of the low-mass X-ray binary GS 1826-24 in June 1998. A type-I burst was detected in both X-ray and optical wavelengths. Its energy-dependent profile, energeti