ﻻ يوجد ملخص باللغة العربية
We report our analysis of X-ray data on M101 ULX-1, concentrating on high state Chandra and XMM-Newton observations. We find that the high state of M101 ULX-1 may have a preferred recurrence timescale. If so, the underlying clock may have periods around 160 or 190 days, or possibly around 45 days. Its short-term variations resemble those of X-ray binaries at high accretion rate. If this analogy is correct, we infer that the accretor is a 20-40 Msun object. This is consistent with our spectral analysis of the high state spectra of M101 ULX-1, from which we find no evidence for an extreme (> 10^40 ergs/s) luminosity. We present our interpretation in the framework of a high mass X-ray binary system consisting of a B supergiant mass donor and a large stellar-mass black hole.
The nature of ultra-luminous X-ray sources (ULXs) has long been plagued by an ambiguity about whether the central compact objects are intermediate-mass (IMBH, >~ 10^3 M_sun) or stellar-mass (a few tens M_sun) black holes (BHs). The high luminosity (~
We report the X-ray data analysis of two transient ultraluminous X-ray sources (ULXs, hereafter X1 and X2) located in the nearby galaxy NGC 7090. While they were not detected in the 2004 XMM-Newton and 2005 Chandra observations, their 0.3-10 keV X-ra
We present the global X-ray properties of the point source population in the grand-design spiral galaxy M101, as seen with XMM-Newton. 108 X-ray sources are detected within the D25 ellipse of M101, of which ~24 are estimated to be background sources.
Most ultraluminous X-ray sources (ULXs) are believed to be stellar mass black holes or neutron stars accreting beyond the Eddington limit. Determining the nature of the compact object and the accretion mode from broadband spectroscopy is currently a
A deep (98.2 ks) Chandra Cycle-1 observation has revealed a wealth of discrete X-ray sources as well as diffuse emission in the nearby face-on spiral galaxy M101. From this rich dataset we have created a catalog of the 110 sources from the S3 chip de