ﻻ يوجد ملخص باللغة العربية
The Burst Alert Telescope (BAT) is one of 3 instruments on the Swift MIDEX spacecraft to study gamma-ray bursts (GRBs). The BAT first detects the GRB and localizes the burst direction to an accuracy of 1-4 arcmin within 20 sec after the start of the event. The GRB trigger initiates an autonomous spacecraft slew to point the two narrow field-of-view (FOV) instruments at the burst location within 20-70 sec so to make follow-up x-ray and optical observations. The BAT is a wide-FOV, coded-aperture instrument with a CdZnTe detector plane. The detector plane is composed of 32,768 pieces of CdZnTe (4x4x2mm), and the coded-aperture mask is composed of approximately 52,000 pieces of lead (5x5x1mm) with a 1-m separation between mask and detector plane. The BAT operates over the 15-150 keV energy range with approximately 7 keV resolution, a sensitivity of approximately 10E-8 erg*cm^-2*s^-1, and a 1.4 sr (half-coded) FOV. We expect to detect >100 GRBs/yr for a 2-year mission. The BAT also performs an all-sky hard x-ray survey with a sensitivity of approximately 2 mCrab (systematic limit) and it serves as a hard x-ray transient monitor.
To date, the Burst Alert Telescope (BAT) onboard Swift has detected ~ 1000 gamma-ray bursts (GRBs), of which ~ 360 GRBs have redshift measurements, ranging from z = 0.03 to z = 9.38. We present the analyses of the BAT-detected GRBs for the past ~ 11
The long gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While h
The gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While hundre
We report a correlation based on a spectral simulation study of the prompt emission spectra of gamma-ray bursts (GRBs) detected by the Swift Burst Alert Telescope (BAT). The correlation is between the Epeak energy, which is the peak energy in the u
We have analyzed the Swift data relevant to the high mass X-ray binary Swift J1816.7-1613. The timing analysis of the BAT survey data unveiled a modulation at a period of P_0=118.5+/-0.8 days that we interpret as the orbital period of the X-ray binar