We compute the rates P at which acoustic energy is injected into the solar radial p modes for several solar models. The solar models are computed with two different local treatments of convection: the classical mixing-length theory (MLT hereafter) and Canuto et al (1996)s formulation (CGM hereafter). Among the models investigated here, our best models reproduce both the solar radius and the solar luminosity at solar age and the observed Balmer line profiles. For the MLT treatment, the rates P do depend significantly on the properties of the atmosphere whereas for the CGMs treatment the dependence of P on the properties of the atmosphere is found smaller than the error bars attached to the seismic measurements. The excitation rates P for modes associated with the MLT models are significantly underestimated compared with the solar seismic constraints. The CGM models yield values for P closer to the seismic data than the MLT models. We conclude that the solar p-mode excitation rates provide valuable constraints and according to the present investigation clearly favor the CGM treatment with respect to the MLT, although neither of them yields values of P as close to the observations as recently found for 3D numerical simulations.