ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinematic Properties and Stellar Populations of Faint Early-Type Galaxies. I. Velocity Dispersion Measurements of Central Coma Galaxies

186   0   0.0 ( 0 )
 نشر من قبل Ana Matkovi\\'c
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present velocity dispersion measurements for 69 faint early-type galaxies in the core of the Coma cluster, spanning -22.0<M_R<-17.5 mag. We examine the L-sigma relation for our sample and compare it to that of bright ellipticals from the literature. The distribution of the the faint early-type galaxies in the L-sigma plane follows the relation L ~ sigma^{2.01pm0.36}, which is significantly shallower from L ~ sigma^4 as defined for the bright ellipticals. While increased rotational support for fainter early-type galaxies could account for some of the difference in slope, we show that it cannot explain it. We also investigate the Colour-sigma relation for our Coma galaxies. Using the scatter in this relation, we constrain the range of galaxy ages as a function of their formation epoch for different formation scenarios. Assuming a strong coordination in the formation epoch of faint early-type systems in Coma, we find that most had to be formed at least 6 Gyrs ago and over a short 1 Gyr period.



قيم البحث

اقرأ أيضاً

We present line-strength measurements for 74 early-type galaxies in the core of the Coma cluster reaching down to velocity dispersions, sigma, of 30 km/s. The index-sigma relations for our sample, including galaxies with sigma<100 km/s (low-sigma), d iffer in shape depending on which index is used. We notice two types of relations for the metallic indices: one showing a break in the slope around ~100 km/s, and another group with strong linear relations between an index and log sigma. We find no connection between the behavior of index-sigma relations with either alpha- or Fe-peak elements. However, we find indications that the relations are tighter for indices which do not depend on the micro-turbulent velocities of stellar atmospheres. We confirm previous results that low-sigma galaxies including dE/dS0s are on average younger, less metal rich, and have lower [alpha/Fe] in comparison to E/S0s. Our data show that these trends derived for high-sigma galaxies extend down to dE/dS0s. This is a factor of ~2 lower in sigma than previously published work. We confirm that the observed anti-correlation between age and metallicity for high-sigma galaxies is consistent with the effects of correlated errors. Low-sigma galaxies also show a similar relation between age and metallicity as a result of correlated errors. However, they are offset from this relationship so that, on average, they are less metal rich and younger than their high-sigma counterparts.
464 - E. Kourkchi 2011
We present the study of a large sample of early-type dwarf galaxies in the Coma cluster observed with DEIMOS on the Keck II to determine their internal velocity dispersion. We focus on a subsample of 41 member dwarf elliptical galaxies for which the velocity dispersion can be reliably measured, 26 of which were studied for the first time. The magnitude range of our sample is $-21<M_R<-15$ mag. This paper (paper I) focuses on the measurement of the velocity dispersion and their error estimates. The measurements were performed using {it pPXF (penalised PiXel Fitting)} and using the Calcium triplet absorption lines. We use Monte Carlo bootstrapping to study various sources of uncertainty in our measurements, namely statistical uncertainty, template mismatch and other systematics. We find that the main source of uncertainty is the template mismatch effect which is reduced by using templates with a range of spectral types. Combining our measurements with those from the literature, we study the Faber-Jackson relation ($Lproptosigma^alpha$) and find that the slope of the relation is $alpha=1.99pm0.14$ for galaxies brighter than $M_Rsimeq-16$ mag. A comprehensive analysis of the results combined with the photometric properties of these galaxies is reported in paper II.
305 - G. Verdoes Kleijn 2003
The majority of nearby early-type galaxies contains detectable amounts of emission-line gas at their centers. The emission-line ratios and gas kinematics potentially form a valuable diagnostic of the nuclear activity and gravitational potential well. The observed central gas velocity dispersion often exceeds the stellar velocity dispersion. This could be due to either the gravitational potential of a black hole or turbulent shocks in the gas. Here we try to discriminate between these two scenarios.
The distribution of early-type galaxy velocity dispersions, phi(sigma), is measured using a sample drawn from the SDSS database. Its shape differs significantly from that which one obtains by simply using the mean correlation between luminosity, L, a nd velocity dispersion, sigma, to transform the luminosity function into a velocity function: ignoring the scatter around the mean sigma-L relation is a bad approximation. An estimate of the contribution from late-type galaxies is also made, which suggests that phi(sigma) is dominated by early-type galaxies at velocities larger than ~ 200 km/s.
225 - F. Annibali 2007
We have acquired intermediate resolution spectra in the 3700-7000 A wavelength range for a sample of 65 early-type galaxies predominantly located in low density environments, a large fraction of which show emission lines. The spectral coverage and th e high quality of the spectra allowed us to derive Lick line-strength indices and to study their behavior at different galacto-centric distances. Ages, metallicities and element abundance ratios have been derived for the galaxy sample by comparison of the line-strength index data set with our new developed Simple Stellar Population (SSP) models. We have analyzed the behavior of the derived stellar population parameters with the central galaxy velocity dispersion and the local galaxy density in order to understand the role played by mass and environment on the evolution of early-type galaxies. We find that the chemical path is mainly driven by the halo mass, more massive galaxies exhibiting the more efficient chemical enrichment and shorter star formation timescales. Galaxies in denser environments are on average older than galaxies in less dense environments. The last ones show a large age spread which is likely to be due to rejuvenation episodes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا