ﻻ يوجد ملخص باللغة العربية
We analyze a sample of ~2600 MIPS/Spitzer 24mic sources brighter than ~80muJy and located in the Chandra Deep Field South to characterize the evolution of the comoving infrared (IR) energy density of the Universe up to z~1. Using published ancillary optical data we first obtain a nearly complete redshift determination for the 24mic objects associated with R<24 counterparts at z<1. We find that the 24mic population at 0.5<z<1 is dominated by ``Luminous Infrared Galaxies (i.e., 10^11 L_sol < L_IR < 10^12 L_sol), the counterparts of which appear to be also luminous at optical wavelengths and tend to be more massive than the majority of optically-selected galaxies. We finally derive 15mic and total IR luminosity functions (LFs) up to z~1. In agreement with the previous results from ISO and SCUBA and as expected from the MIPS source number counts, we find very strong evolution of the contribution of the IR-selected population with lookback time. Pure evolution in density is firmly excluded by the data, but we find considerable degeneracy between strict evolution in luminosity and a combination of increases in both density and luminosity (L*_IR prop. to (1+z)^{3.2_{-0.2}^{+0.7}}, Phi*_IR prop. to (1+z)^{0.7_{-0.6}^{+0.2}}). Our results imply that the comoving IR energy density of the Universe evolves as (1+z)^(3.9+/-0.4) up to z~1 and that galaxies luminous in the infrared (i.e., L_IR > 10^11 L_IR) are responsible for 70+/-15% of this energy density at z~1. Taking into account the contribution of the UV luminosity evolving as (1+z)^~2.5, we infer that these IR-luminous sources dominate the star-forming activity beyond z~0.7. The uncertainties affecting these conclusions are largely dominated by the errors in the k-corrections used to convert 24mic fluxes into luminosities.
We report the discovery of a luminous z=5.78 star-forming galaxy in the Chandra Deep Field South. This galaxy was selected as an `i-drop from the GOODS public survey imaging with HST/ACS (object 3 in Stanway, Bunker & McMahon 2003, astro-ph/0302212).
The combination of both contributions from the observed UV emission and the absorbed radiations reprocessed in the infrared represents the ideal approach to constrain the activity of massive star formation in galaxies. Using recent results from GALEX
We use a 24 micron selected sample containing more than 8,000 sources to study the evolution of star-forming galaxies in the redshift range from z=0 to z~3. We obtain photometric redshifts for most of the sources in our survey using a method based on
Using deep observations of the Chandra Deep Field South obtained with MIPS at 24mic, we present our preliminary estimates on the evolution of the infrared (IR) luminosity density of the Universe from z=0 to z~1. We find that a pure density evolution
We present the main results from our 940 ksec observation of the Chandra Deep Field South (CDFS), using the source catalog described in an accompanying paper (Giacconi et al. 2001). We extend the measurement of source number counts to 5.5e-17 erg/cm^