ترغب بنشر مسار تعليمي؟ اضغط هنا

Bright X-ray Flares in Gamma-Ray Burst Afterglows

143   0   0.0 ( 0 )
 نشر من قبل David N. Burrows
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright X-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid X-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.



قيم البحث

اقرأ أيضاً

329 - Y. Z. Fan 2005
We explore two possible models which might give rise to bright X-ray flares in GRBs afterglows. One is an external forward-reverse shock model, in which the shock parameters of forward/reverse shocks are taken to be quite different. The other is a so called late internal shock model, which requires a refreshed unsteady relativistic outflow generated after the prompt $gamma-$ray emission. In the forward-reverse shock model, after the time $t_times$ at which the RS crosses the ejecta, the flux declines more slowly than $(t_oplus/t_times)^{-(2+beta)}$, where $t_oplus$ denotes the observers time and $beta$ is the spectral index of the X-ray emission. In the ``late internal shock model, decaying slopes much steeper than $(t_oplus/t_{rm e, oplus})^{-(2+beta)}$ are possible if the central engine shuts down after $t_{rm e, oplus}$ and the observed variability timescale of the X-ray flare is much shorter than $t_{rm e, oplus}$. The sharp decline of the X-ray flares detected in GRB 011121, XRF 050406, GRB 050502b, and GRB 050730 rules out the external forward-reverse shock model directly and favors the late internal shock model. These X-ray flares could thus hint that the central engine operates again and a new unsteady relativistic outflow is generated just a few minutes after the intrinsic hard burst.
160 - Y.F. Huang , T. Lu , K.S. Cheng 2007
The discovery of multiband afterglows definitely shows that most $gamma$-ray bursts are of cosmological origin. $gamma$-ray bursts are found to be one of the most violent explosive phenomena in the Universe, in which astonishing ultra-relativistic mo tions are involved. In this article, the multiband observational characteristics of $gamma$-ray bursts and their afterglows are briefly reviewed. The standard model of $gamma$-ray bursts, i.e. the fireball model, is described. Emphasis is then put on the importance of the nonrelativistic phase of afterglows. The concept of deep Newtonian phase is elaborated. A generic dynamical model that is applicable in both the relativistic and nonrelativistic phases is introduced. Based on these elaborations, the overall afterglow behaviors, from the very early stages to the very late stages, can be conveniently calculated.
144 - D. A. Badjin 2013
We study thermal emission from circumstellar structures heated by gamma-ray burst (GRB) radiation and ejecta and calculate its contribution to GRB optical and X-ray afterglows using the modified radiation hydro-code small STELLA. It is shown that the rmal emission originating in heated dense shells around the GRB progenitor star can reproduce X-ray plateaus (like observed in GRB 050904, 070110) as well as deviations from a power law fading observed in optical afterglows of some GRBs (e.g. 020124, 030328, 030429X, 050904). Thermal radiation pressure in the heated circumburst shell dominates the gas pressure, producing rapid expansion of matter similar to supenova-like explosions close to opacity or radiation flux density jumps in the circumburst medium. This phenomenon can be responsible for so-called supernova bumps in optical afterglows of several GRBs. Such a `quasi-supernova suggests interpretation of the GRB-SN connection which does not directly involve the explosion of the GRB progenitor star.
For gamma-ray bursts (GRBs) with a plateau phase in the X-ray afterglow, a so called $L-T-E$ correlation has been found which tightly connects the isotropic energy of the prompt GRB ($E_{gamma,rm{iso}}$) with the end time of the X-ray plateau ($T_{a} $) and the corresponding X-ray luminosity at the end time ($L_{X}$). Here we show that there is a clear redshift evolution in the correlation. Furthermore, since the power-law indices of $L_{X}$ and $E_{gamma,rm{iso}}$ in the correlation function are almost identical, the $L-T-E$ correlation is insensitive to cosmological parameters and cannot be used as a satisfactory standard candle. On the other hand, based on a sample including 121 long GRBs, we establish a new three parameter correlation that connects $L_{X}$, $T_{a}$ and the spectral peak energy $E_{rm{p}}$, i.e. the $L-T-E_{rm{p}}$ correlation. This correlation strongly supports the so-called Combo-relation established by Izzo et al. (2015). After correcting for the redshift evolution, we show that the de-evolved $L-T-E_{rm{p}}$ correlation can be used as a standard candle. By using this correlation alone, we are able to constrain the cosmological parameters as $Omega_{m}=0.389^{+0.202}_{-0.141}$ ($1sigma$) for the flat $Lambda$CDM model, or $Omega_{m}=0.369^{+0.217}_{-0.191}$, $w=-0.966^{+0.513}_{-0.678}$ ($1sigma$) for the flat $w$CDM model. Combining with other cosmological probes, more accurate constraints on the cosmology models are presented.
The Swift X-ray Telescope (XRT) has discovered that flares are quite common in early X-ray afterglows of Gamma-Ray Bursts (GRBs), being observed in roughly 50% of afterglows with prompt followup observations. The flares range in fluence from a few pe rcent to ~ 100% of the fluence of the prompt emission (the GRB). Repetitive flares are seen, with more than 4 successive flares detected by the XRT in some afterglows. The rise and fall times of the flares are typically considerably smaller than the time since the burst. These characteristics suggest that the flares are related to the prompt emission mechanism, but at lower photon energies. We conclude that the most likely cause of these flares is late-time activity of the GRB central engine.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا