ﻻ يوجد ملخص باللغة العربية
We discuss the high enegry afterglow emission (including high energy photons, neutrinos and cosmic rays) following the 2004 December 27 Giant Flare from SGR 1806-20. If the initial outflow is relativistic with a bulk Lorentz factor Gamma_0sim {rm tens}, the high-energy tail of the synchrotron emission from electrons in the forward shock region gives rise to a prominent sub-GeV emission, if the electron spectrum is hard enough and if the intial Lorentz factor is high enough. This signal could serve as a diagnosis of the initial Lorentz factor of the giant flare outflow. This component is potentially detectable by GLAST if a similar giant flare occurs in the GLAST era. With the available 10 MeV data, we constrain that Gamma_0 < 50 if the electron distribution is a single power law. For a broken power law distribution of electrons, a higher Gamma_0 is allowed. At energies higher than 1 GeV, the flux is lower because of a high energy cut off of the synchrotron emission component. The synchrotron self-Compton emission component and the inverse Compton scattering component off the photons in the giant flare oscillation tail are also considered, but they are found not significant given a moderate Gamma_0 (e.g. leq 10). The forward shock also accelerates cosmic rays to the maximum energy 10^{17}eV, and generate neutrinos with a typical energy 10^{14}eV through photomeson interaction with the X-ray tail photons. However, they are too weak to be detectable.
The 2004 Dec. 27 giant Gamma-ray flare detected from the magnetar SGR 1806-20 created an expanding radio nebula which we have monitored with the Australia Telescope Compact Array and the Very Large Array. These data indicate that there was an increas
On Dec 27, 2004, the magnetar SGR 1806-20 underwent an enormous outburst resulting in the formation of an expanding, moving, and fading radio source. We report observations of this radio source with the Multi-Element Radio-Linked Interferometer Netwo
XMM-Newton observed the soft gamma repeater SGR 1806-20 about two months after its 2004 December 27 giant flare. A comparison with the previous observations taken with the same instrument in 2003-2004 shows that the pulsed fraction and the spin-down
The extraordinary giant flare (GF) of 2004 December 27 from the soft gamma repeater (SGR) 1806-20 was followed by a bright radio afterglow. We present an analysis of VLA observations of this radio afterglow from SGR 1806-20, consisting of previously
We present CO(J=1-0) observations in the direction of the Soft Gamma Repeater SGR 1806-20 with the SEST telescope. We detected several molecular clouds, and we discuss in this paper the implications of these observations for the distance to the X-ray