ﻻ يوجد ملخص باللغة العربية
Discoveries of two new white dwarf plus M star binaries with striking optical cyclotron emission features from the Sloan Digital Sky Survey (SDSS) brings to six the total number of X-ray faint, magnetic accretion binaries that accrete at rates < 10^{-13} Msun/yr, or <1% of the values normally encountered in cataclysmic variables. This fact, coupled with donor stars that underfill their Roche lobes and very cool white dwarfs, brand the binaries as post common-envelope systems whose orbits have not yet decayed to the point of Roche-lobe contact. They are pre-magnetic CVs, or pre-Polars. The systems exhibit spin/orbit synchronism and apparently accrete by efficient capture of the stellar wind from the secondary star, a process that has been dubbed a ``magnetic siphon. Because of this, period evolution of the binaries will occur solely by gravitational radiation, which is very slow for periods >3 hr. Optical surveys for the cyclotron harmonics appear to be the only means of discovery, so the space density of pre-Polars could rival that of Polars, and the binaries provide an important channel of progenitors (in addition to the asynchronous Intermediate Polars). Both physical and SDSS observational selection effects are identified that may help to explain the clumping of all six systems in a narrow range of magnetic field strength around 60 MG.
We have used a model of magnetic accretion to investigate the accretion flows of magnetic cataclysmic variables. Numerical simulations demonstrate that four types of flow are possible: discs, streams, rings and propellers. The fundamental observable
The structure of the near-polar accretion spots on accreting magnetic white dwarfs has been studied theoretically and observationally in numerous papers over the last decade. Detailed treatments are available for the regime of low mass flux, usually
I review our current understanding of the evolution of cataclysmic variables (CVs). I first provide a brief introductory CV primer, in which I describe the physical structure of CVs, as well as their astrophysical significance. The main part of the r
Using a parameterised function for the mass loss at the base of the post-shock region, we have constructed a formulation for magnetically confined accretion flows which avoids singularities, such as the infinity in density, at the base associated wit