ﻻ يوجد ملخص باللغة العربية
We investigate the correlations among stellar mass (M_*), disk scale length (R_d), and rotation velocity at 2.2 disk scale lengths (V_2.2) for a sample of 81 disk-dominated galaxies (disk/total >= 0.9) selected from the SDSS. We measure V_2.2 from long-slit H-alpha rotation curves and infer M_* from galaxy i-band luminosities (L_i) and g-r colors. We find logarithmic slopes of 2.60+/-0.13 and 3.05+/-0.12 for the L_i-V_2.2 and M_*-V_2.2 relations, somewhat shallower than most previous studies, with intrinsic scatter of 0.13 dex and 0.16 dex. Our direct estimates of the total-to-stellar mass ratio within 2.2R_d, assuming a Kroupa IMF, yield a median ratio of 2.4 for M_*>10^10 Msun and 4.4 for M_*=10^9-10^10 Msun, with large scatter at a given M_* and R_d. The typical ratio of the rotation speed predicted for the stellar disk alone to the observed rotation speed at 2.2R_d is ~0.65. The distribution of R_d at fixed M_* is broad, but we find no correlation between disk size and the residual from the M_*-V_2.2 relation, implying that this relation is an approximately edge-on view of the disk galaxy fundamental plane. Independent of the assumed IMF, this result implies that stellar disks do not, on average, dominate the mass within 2.2R_d. We discuss our results in the context of infall models of disk formation in cold dark matter halos. A model with a disk-to-halo mass ratio m_d=0.05 provides a reasonable match to the R_d-M_* distribution for spin parameters lambda ranging from ~0.04-0.08, and it yields a reasonable match to the mean M_*-V_2.2 relation. A model with m_d=0.1 predicts overly strong correlations between disk size and M_*-V_2.2 residual. Explaining the wide range of halo-to-disk mass ratios within 2.2R_d requires significant scatter in m_d values, with systematically lower m_d for galaxies with lower $M_*$.
We explore how the slopes and scatters of the scaling relations of disk galaxies (Vm-L[-M], R-L[-M], and Vm-R) do change when moving from B to K bands and to stellar and baryonic quantities. For our compiled sample of 76 normal, non-interacting high
Analytic arguments and numerical simulations show that bosonic ultra-light dark matter (ULDM) would form cored density distributions (`solitons) at the center of galaxies. ULDM solitons offer a promising way to exclude or detect ULDM by looking for a
We present a study on the clustering of a stellar mass selected sample of 18,482 galaxies with stellar masses M*>10^10M(sun) at redshifts 0.4<z<2.0, taken from the Palomar Observatory Wide-field Infrared Survey. We examine the clustering properties o
We present a simple technique to estimate mass-to-light (M/L) ratios of stellar populations based on two broadband photometry measurements, i.e. a color-M/L relation. We apply the color-M/L relation to galaxy rotation curves, using a large set of gal
Dark matter-only simulations predict that dark matter halos have steep, cuspy inner density profiles, while observations of dwarf galaxies find a range of inner slopes that are often much shallower. There is debate whether this discrepancy can be exp