ﻻ يوجد ملخص باللغة العربية
Even from a light polluted city it is possible to observe Near Earth Asteroids (NEAs) at opposition using a small telescope equipped with a CCD camera. In this paper, we will overview first the major NEA programs, continuing with planning the observations and the data reduction. Second, we will present a NEA follow-up program carried out on the 60-cm telescope at York University Observatory in Toronto, Canada. Part of this program, five NEAs have been observed during ten nights. Their astrometric and photometric data were reduced and sent to the Minor Planet Centre, following which an observatory code was assigned and four batches have been included in the NEODyS database and MPC Circulars. The results are applicable to any other small facility.
The James Webb Space Telescope (JWST) has the potential to enhance our understanding of near-Earth objects (NEOs). We present results of investigations into the observability of NEOs given the nominal observing requirements of JWST on elongation (85-
The population of near-Earth asteroids (NEAs) shows a large variety of objects in terms of physical and dynamical properties. They are subject to planetary encounters and to strong solar wind and radiation effects. Their study is also motivated by pr
We seek evidence of the Yarkovsky effect among Near Earth Asteroids (NEAs) by measuring the Yarkovsky-related orbital drift from the orbital fit. To prevent the occurrence of unreliable detections we employ a high precision dynamical model, including
Gaia is an astrometric mission that will be launched in 2013 and set on L2 point of Lagrange. It will observe a large number of Solar System Objets (SSO) down to magnitude 20. The Solar System Science goal is to map thousand of Main Belt asteroids (M
One-opposition near-Earth asteroids (NEAs) are growing in number, and they must be recovered to prevent loss and mismatch risk, and to improve their orbits, as they are likely to be too faint for detection in shallow surveys at future apparitions. We