The evolution of the cluster X-ray scaling relations in the WARPS sample at 0.6<z<1.0


الملخص بالإنكليزية

The X-ray properties of a sample of 11 high-redshift (0.6<z<1.0) clusters observed with Chandra and/or XMM are used to investigate the evolution of the cluster scaling relations. The observed evolution of the L-T and M-L relations is consistent with simple self-similar predictions, in which the properties of clusters reflect the properties of the universe at their redshift of observation. When the systematic effect of assuming isothermality on the derived masses of the high-redshift clusters is taken into account, the high-redshift M-T and Mgas-T relations are also consistent with self-similar evolution. Under the assumption that the model of self-similar evolution is correct and that the local systems formed via a single spherical collapse, the high-redshift L-T relation is consistent with the high-z clusters having formed at a significantly higher redshift than the local systems. The data are also consistent with the more realistic scenario of clusters forming via the continuous accretion of material. The slope of the L-T relation at high-redshift (B=3.29+/-0.38) is consistent with the local relation, and significantly steeper then the self-similar prediction of B=2. This suggests that the non-gravitational processes causing the steepening occurred at z>1 or in the early stages of the clusters formation, prior to their observation. The properties of the intra-cluster medium at high-redshift are found to be similar to those in the local universe. The mean surface-brightness profile slope for the sample is 0.66+/-0.05, the mean gas mass fractions within R2500 and R200 are 0.073+/-0.010 and 0.12+/-0.02 respectively, and the mean metallicity of the sample is 0.28+/-0.16 solar.

تحميل البحث