ﻻ يوجد ملخص باللغة العربية
Laboratory experiments, large-scale computer simulations and observational cosmology have begun to make progress in the campaign to identify the particle responsible for gravitationally-inferred dark matter. In this contribution we discuss the dark matter density profiles in the cores of nearby galaxy clusters and estimate the gamma-ray flux expected for MSSM dark matter over a range of neutralino masses.
In recent years, significant progress has been made in building new galaxy clusters samples, at low and high redshifts, from wide-area surveys, particularly exploiting the Sunyaev--Zeldovich (SZ) effect. A large effort is underway to identify and cha
We demonstrate that all properties of the hot X-ray emitting gas in galaxy clusters are completely determined by the underlying dark matter (DM) structure. Apart from the standard conditions of spherical symmetry and hydrostatic equilibrium for the g
The $gamma$-ray and neutrino emissions from dark matter (DM) annihilation in galaxy clusters are studied. After about one year operation of Fermi-LAT, several nearby clusters are reported with stringent upper limits of GeV $gamma$-ray emission. We us
We derive a model for Sunyaev--Zeldovich data from a galaxy cluster which uses an Einasto profile to model the clusters dark matter component. This model is similar to the physical models for clusters previously used by the Arcminute Microkelvin Imag
We present the results of a first search for self-annihilating dark matter in nearby galaxies and galaxy clusters using a sample of high-energy neutrinos acquired in 339.8 days of live time during 2009/10 with the IceCube neutrino observatory in its