ﻻ يوجد ملخص باللغة العربية
To address how the galaxy Hubble sequence is established and what physical processes are involved, we studied morphological properties and internal structures of field galaxies in the past (0.4<z<1). In addition to structural parameters derived from bulge+disk decomposition, Zheng et al. (2004) introduced color maps in recognizing galaxies and properly classified morphologies of 36 luminous infrared galaxies (LIRGs, Lir(8-1000um)>=10^11 L_sun). Here we presented morphological classification of a parallel 75 non-LIRG sample. Our examination revealed that a significant fraction of the galaxies shows remarkable morphological evolution, most likely related to the present-day spiral galaxies. Comparison of the morphological properties between LIRGs and non-LIRGs shows that the LIRGs contain a higher fraction of ongoing major mergers and systems with signs of merging/interaction. This suggests that the merging process is one of the major mechanisms to trigger star formation. We found that spiral LIRGs probably host much fewer bars than spiral non-LIRGs, suggesting that a bar is not efficient in triggering violent star formation. Differing from Abraham et al. (1999), no dramatic change of the bar frequency is detected up to redshift ~0.8. The bar frequency of the distant spirals is similar to (and may be higher than) the present-day spirals in the rest-frame $B$ band. We conclude that bar-driven secular evolution is not a major mechanism to drive morphological evolution of field galaxies, especially their bulge formation, which is more likely related to multiple intense star formation episodes during which the galaxies appear as LIRGs (Hammer et al. 2005).
Using HST/WFPC2 imaging in F606W (or F450W) and F814W filters, we obtained the color maps in observed frame for 36 distant (0.4<z<1.2) luminous infrared galaxies (LIRGs), with average star formation rates of ~100 M_sun/yr. Stars and compact sources a
We have used high-resolution, HST WFC3/IR, near-infrared imaging to conduct a detailed bulge-disk decomposition of the morphologies of ~200 of the most massive (M_star > 10^11 M_solar) galaxies at 1<z<3 in the CANDELS-UDS field. We find that, while s
HST is used to study the power sources and the interaction-induced tidal disturbances within the most luminous galaxies in the local universe -- the Ultra-Luminous IR Galaxies (ULIRGs) -- through the use of I-band images with WFPC2 and H-band images
We present Hubble Space Telescope (HST) imaging of 22 ultra-luminous infrared galaxies (ULIRGs) at z~2 with extremely red R-[24] colors (called dust-obscured galaxies, or DOGs) which have a local maximum in their spectral energy distribution (SED) at
(abridged) Powerful radio galaxies often display enhanced optical/UV emission regions, elongated and aligned with the radio jet axis. The aim of this series of papers is to separately investigate the effects of radio power and redshift on the alignme