ﻻ يوجد ملخص باللغة العربية
X-ray spectra of the late-type star AB Dor, obtained with the XMM-Newton satellite are analysed. AB Dor was particularly active during the observations. An emission measure reconstruction technique is employed to analyse flare and quiescent spectra, with emphasis on the Fe XVII 15-17 A wavelength region. The Fe XVII 16.78 A/15.01 A line ratio increases significantly in the hotter flare plasma. This change in the ratio is opposite to the theoretical predictions and is attributed to the scattering of 15.01 A line photons from the line-of-sight. The escape probability technique indicates an optical depth of about 0.4 for the 15.01 A line. During the flare, the electron density is 4.4*10^10 cm^-3 and the fractional Fe abundance is 0.5 +/- 0.1 of the solar photospheric value. Using these parameters a path length of about 8,000 km is derived. There is no evidence for opacity in the quiescent X-ray spectrum of the star.
Studies of fundamental parameters of very low-mass objects are indispensable to provide tests of stellar evolution models that are used to derive theoretical masses of brown dwarfs and planets. However, only objects with dynamically determined masses
Coronal mass ejections (CMEs), often associated with flares, are the most powerful magnetic phenomena occurring on the Sun. Stars show magnetic activity levels up to 10^4 times higher, and CME effects on stellar physics and circumstellar environments
Although chromospheric activity cycles have been studied in a larger number of late-type stars for quite some time, very little is known about coronal activity-cycles in other stars and their similarities or dissimilarities with the solar activity cy
This paper reports measurements of Sgr A* made with NACO in L -band (3.80 um), Ks-band (2.12 um) and H-band (1.66 um) and with VISIR in N-band (11.88 um) at the ESO VLT, as well as with XMM-Newton at X-ray (2-10 keV) wavelengths. On 4 April, 2007, a
The GOES X1.5 class flare that occurred on August 30,2002 at 1327:30 UT is one of the few events detected so far at submillimeter wavelengths. We present a detailed analysis of this flare combining radio observations from 1.5 to 212 GHz (an upper lim