ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy Groups at 0.3 <= z <= 0.55. II. Evolution to z ~ 0

253   0   0.0 ( 0 )
 نشر من قبل David Wilman
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare deep Magellan spectroscopy of 26 groups at 0.3 <= z <= 0.55, selected from the Canadian Network for Observational Cosmology 2 field survey (CNOC2), with a large sample of nearby groups from the 2PIGG catalogue (Eke et al., 2004). We find that the fraction of group galaxies with significant [OII] emission (>=5AA) increases strongly with redshift, from ~29% in 2dFGRS to ~58% in CNOC2, for all galaxies brighter than ~ M*+1.75. This trend is parallel to the evolution of field galaxies, where the equivalent fraction of emission line galaxies increases from ~ 53% to ~ 75%. The fraction of emission-line galaxies in groups is lower than in the field, across the full redshift range, indicating that the history of star formation in groups is influenced by their environment. We show that the evolution required to explain the data is inconsistent with a quiescent model of galaxy evolution; instead, discrete events in which galaxies cease forming stars (truncation events) are required. We constrain the probability of truncation (P_trunc) and find that a high value is required in a simple evolutionary scenario neglecting galaxy mergers (P_trunc >~ 0.3 Gyr^{-1}). However, without assuming significant density evolution, P_trunc is not required to be larger in groups than in the field, suggesting that the environmental dependence of star formation was embedded at redshifts z >~ 0.45.



قيم البحث

اقرأ أيضاً

The evolution of galaxies in groups may have important implications for the evolution of the star formation history of the universe, since many processes which operate in groups may suppress star formation and the fraction of galaxies in bound groups grows rapidly between z=1 and the present day. In this paper, we present an investigation of the properties of galaxies in galaxy groups at intermediate redshift (z ~ 0.4). The groups were selected from the CNOC2 redshift survey as described in Carlberg et al., 2001, with further spectroscopic follow-up undertaken at the Magellan telescope in order to improve the completeness and depth of the sample. We present the data for the individual groups, and find no clear trend in the fraction of passive galaxies with group velocity dispersion and group concentration. We stack the galaxy groups in order to compare the properties of group galaxies with those of field galaxies at the same redshift. The groups contain a larger fraction of passive galaxies than the field, this trend being particularly clear for galaxies brighter than M_{B_J} < -20 in the higher velocity dispersion groups. In addition, we see evidence for an excess of bright passive galaxies in the groups relative to the field. In contrast, the luminosity functions of the star forming galaxies in the groups and the field are consistent. These trends are qualitatively consitent with the differences between group and field galaxies seen in the local universe.
403 - Michael L. Balogh 1999
(abridged) We measure spectral indices for 1823 galaxies in the CNOC1 sample of fifteen X-ray luminous clusters at 0.18<z<0.55, to investigate the mechanisms responsible for differential evolution between the galaxy cluster and field environments. Th e radial trends of D4000, Hdelta and [OII] are all consistent with an age sequence, in the sense that the last episode of star formation occurred more recently in galaxies farthest from the cluster center. Throughout the cluster environment, galaxies show evidence for older mean stellar populations than field galaxies. From the subsample of galaxies more luminous than M_r=-18.8 + 5log h, we identify a sample of K+A galaxies, which may result from recently terminated star formation. Corrected for a systematic effect which results from the large uncertainties on individual spectral index measurements, we estimate that K+A galaxies make up only 1.5 +/- 0.8 % of the cluster sample, and 1.2 +/- 0.8 % of the field. We compare our data with spectrophotometric models and conclude that up to 1.9 +/- 0.8 % of the cluster population may have had its star formation recently truncated without a starburst. However, this is still not significantly greater than the fraction of such galaxies in the field, 3.1 +/- 1.0 %. Furthermore, we do not detect an excess of cluster galaxies that have unambiguously undergone a starburst within the last 1 Gyr. Our results imply that these cluster environments are not responsible for inducing starbursts; thus, the increase in cluster blue galaxy fraction with redshift may not be a strictly cluster--specific phenomenon. We suggest that the truncation of star formation in clusters may largely be a gradual process, perhaps due to the exhaustion of gas in the galactic disk over fairly long timescales.
We calculate synthetic UBVRIJHKLM images, integrated spectra and colours for the disk galaxy formation models of Samland & Gerhard (2002), from redshift z=4 to z=0. Two models are considered, an accretion model based on LambdaCDM structure formation simulations, and a classical collapse model in a dark matter halo. Both models provide the star formation history and dynamics of the baryonic component within a three-dimensional chemo-dynamical description. To convert to spectra and colours, we use the latest, metallicity-calibrated spectral library of Westera et al. (2002), including internal absorption. As a first application, we compare the derived colours with Hubble Deep Field North bulge colours and find good agreement. With our model, we disentangle metallicity effects and absorption effects on the integrated colours, and find that absorption effects are dominant for redshift z < 1.5. Furthermore, we confirm the quality of m_K as a mass tracer, and find indications for a correlation between (J-K) and metallicity gradients.
214 - R. De Propris 2010
We measure the fraction of Luminous Red Galaxies (LRGs) in dynamically close pairs (with projected separation less than 20 $h^{-1}$ kpc and velocity difference less than 500 km s$^{-1}$) to estimate the dry merger rate for galaxies with $-23 < M(r)_{ k+e,z=0.2} +5 log h < -21.5$ and $0.45 < z < 0.65$ in the 2dF-SDSS LRG and QSO (2SLAQ) redshift survey. For galaxies with a luminosity ratio of $1:4$ or greater we determine a $5sigma$ upper limit to the merger fraction of 1.0% and a merger rate of $< 0.8 times 10^{-5}$ Mpc$^{-3}$ Gyr$^{-1}$ (assuming that all pairs merge on the shortest possible timescale set by dynamical friction). This is significantly smaller than predicted by theoretical models and suggests that major dry mergers do not contribute to the formation of the red sequence at $z < 0.7$.
300 - Sadman Ali 2018
We have analysed the strength of the UV upturn in red sequence galaxies with luminosities reaching to below the $L^*$ point within four clusters at $z$ = 0.3, 0.55 & 0.7. We find that the incidence and strength of the upturn remains constant up to $z =0.55$. In comparison, the prevalence and strength of the UV upturn is significantly diminished in the $z=0.7$ cluster, implying that the stellar population responsible for the upturn in a typical red sequence galaxy is only just developing at this redshift and is essentially fully-developed by $sim 1$ Gyr later. Of all the mainstream models that seek to explain the UV upturn phenomenon, it is those that generate the upturn through the presence of a Helium-enhanced stellar subpopulation on the (hot) horizontal branch that are most consistent with this behaviour. The epoch ($z=0.7$) where the stars responsible for the upturn first evolve from the red giant branch places constraints on their age and chemical abundances. By comparing our results with the prediction made by the YEPS Helium-enhanced spectrophotometic models, we find that a solar metallicity sub-population that displays a consistent upturn between $0<z<0.55$ but then fades by $z=0.7$ would require a Helium abundance of $Ygeqslant0.45$, if formed at $z_fsim4$. Later formation redshifts and/or higher metallicity would further increase the Helium enhancement required to produce the observed upturn in these clusters and vice versa.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا