ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-empirical analysis of SDSS galaxies: I. Spectral synthesis method

50   0   0.0 ( 0 )
 نشر من قبل Abilio Mateus Jr
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. Cid Fernandes




اسأل ChatGPT حول البحث

In this paper we investigate the power of spectral synthesis as a mean to estimate physical properties of galaxies. Spectral synthesis is nothing more than the decomposition of an observed spectrum in terms of a superposition of a base of simple stellar populations of various ages and metallicities, producing as output the star-formation and chemical histories of a galaxy, its extinction and velocity dispersion. Our implementation of this method uses the Bruzual & Charlot (2003) models and observed spectra in the 3650--8000 AA range. The reliability of this approach is studied by three different means: (1) simulations, (2) comparison with previous work based on a different technique, and (3) analysis of the consistency of results obtained for a sample of galaxies from the SDSS. We find that spectral synthesis provides reliable physical parameters as long as one does not attempt a very detailed description of the star-formation and chemical histories. We show that besides providing excellent fits to observed galaxy spectra, this method is able to recover useful information on the distributions of stellar ages and, more importantly, stellar metallicities. Stellar masses, velocity dispersion and extinction are also found to be accurately retrieved for realistic signal-to-noise ratios. We apply this synthesis method to a volume limited sample of 50362 galaxies from the SDSS DR2, producing a catalog of stellar population properties. A comparison with recent estimates of both observed and physical properties of these galaxies obtained by other groups shows good qualitative and quantitative agreement. The confidence in the method is further strengthened by several empirical and astrophysically reasonable correlations between synthesis results and independent quantities.



قيم البحث

اقرأ أيضاً

Various lines of evidence suggest that the cores of a large portion of early-type galaxies (ETGs) are virtually evacuated of warm ionised gas. This implies that the Lyman-continuum (LyC) radiation produced by an assumed active galactic nucleus (AGN) can escape from the nuclei of these systems without being locally reprocessed into nebular emission, which would prevent their reliable spectroscopic classification as Seyfert galaxies with standard diagnostic emission-line ratios. The spectral energy distribution (SED) of these ETGs would then lack nebular emission and be essentially composed of an old stellar component and the featureless power-law (PL) continuum from the AGN. A question that arises in this context is whether the AGN component can be detected with current spectral population synthesis in the optical, specifically, whether these techniques effectively place an AGN detection threshold in LyC-leaking galaxies. To quantitatively address this question, we took a combined approach that involves spectral fitting with STARLIGHT of synthetic SEDs composed of stellar emission that characterises a 10 Gyr old ETG and an AGN power-law component that contributes a fraction $0leq x_{mathrm{AGN}} < 1$ of the monochromatic luminosity at $lambda_0=$ 4020 AA. In addition to a set of fits for PL distributions $F_{ u} propto u^{-alpha}$ with the canonical $alpha=1.5$, we used a base of multiple PLs with $0.5 leq alpha leq 2$ for a grid of synthetic SEDs with a signal-to-noise ratio of 5-$10^3$. Our analysis indicates an effective AGN detection threshold at $x_{mathrm{AGN}}simeq 0.26$, which suggests that a considerable fraction of ETGs hosting significant accretion-powered nuclear activity may be missing in the AGN demographics.
52 - Abilio Mateus 2005
We revisit the bimodal distribution of the galaxy population commonly seen in the local universe. Here we address the bimodality observed in galaxy properties in terms of spectral synthesis products, such as mean stellar ages and stellar masses, deri ved from the application of this powerful method to a volume-limited sample, with magnitude limit cutoff M_r = -20.5, containing about 50 thousand luminous galaxies from the SDSS Data Release 2. In addition, galaxies are classified according to their emission line properties in three distinct spectral classes: star-forming galaxies, with young stellar populations; passive galaxies, dominated by old stellar populations; and, hosts of active nuclei, which comprise a mix of young and old stellar populations. We show that the extremes of the distribution of some galaxy properties, essentially galaxy colours, 4000 A break index, and mean stellar ages, are associated to star-forming galaxies at one side, and passive galaxies at another. We find that the mean light-weighted stellar age of galaxies is the direct responsible for the bimodality seen in the galaxy population. The stellar mass, in this view, has an additional role since most of the star-forming galaxies present in the local universe are low-mass galaxies. Our results also give support to the existence of a downsizing in galaxy formation, where massive galaxies seen nowadays have stellar populations formed at early times.
120 - P.A.A. Lopes 2007
In this work I discuss the necessary steps for deriving photometric redshifts for luminous red galaxies (LRGs) and galaxy clusters through simple empirical methods. The data used is from the Sloan Digital Sky Survey (SDSS). I show that with three ban ds only ({it gri}) it is possible to achieve results as accurate as the ones obtained by other techniques, generally based on more filters. In particular, the use of the $(g-i)$ color helps improving the final redshifts (especially for clusters), as this color monotonically increases up to $z sim 0.8$. For the LRGs I generate a catalog of $sim 1.5$ million objects at $z < 0.70$. The accuracy of this catalog is $sigma = 0.027$ for $z le 0.55$ and $sigma = 0.049$ for $0.55 < z le 0.70$. The photometric redshift technique employed for clusters is independent of a cluster selection algorithm. Thus, it can be applied to systems selected by any method or wavelength, as long as the proper optical photometry is available. When comparing the redshift listed in literature to the photometric estimate, the accuracy achieved for clusters is $sigma = 0.024$ for $z le 0.30$ and $sigma = 0.037$ for $030 < z le 0.55$. However, when considering the spectroscopic redshift as the mean value of SDSS galaxies on each cluster region, the accuracy is at the same level as found by other authors: $sigma = 0.011$ for $z le 0.30$ and $sigma = 0.016$ for $030 < z le 0.55$. The photometric redshift relation derived here is applied to thousands of cluster candidates selected elsewhere. I have also used galaxy photometric redshifts available in SDSS to identify groups in redshift space and then compare the redshift peak of the nearest group to each cluster redshift (ABRIDGED).
We investigate the relationship between host galaxies stellar content and active galactic nuclei (AGN) for optically selected QSOs with z$<$0.5. There are total 82 QSOs we select from Sloan Digital Sky Survey (SDSS) . These 82 QSOs both have Wide-fie ld Infrared Survey Explorer (WISE) data and measurable stellar content. With the help of the stellar population synthesis code STARLIGHT, we determine the luminosity fraction of AGN ,stellar population ages and star-formation history (SFH) of host galaxies. We find out there is a correlation between the star formation history and AGN property which suggests a possible delay from star formation to AGN. This probably indicates that the AGN activity correlate with the star formation activity which consistent with a co-evolution scheme for black hole and host galaxies.
We compare six popularly used evolutionary population synthesis (EPS) models (BC03, CB07, Ma05, GALEV, GRASIL, Vazdekis/Miles) through fitting the full optical spectra of six representative types of galaxies (star-forming and composite galaxies, Seyf ert 2s, LINERs, E+A and early-type galaxies), which are taken from the Sloan Digital Sky Survey (SDSS). Throughout our paper, we use the simple stellar populations (SSPs) from each EPS model and the software STARLIGHT to do our fits. Our main results are: Using different EPS models the resulted numerical values of contributed light fractions change obviously, even though the dominant populations are consistent. The stellar population synthesis does depend on the selection of age and metallicity, while it does not depend on the stellar evolution track much. The importance of young populations decreases from star-forming, composite, Seyfert 2, LINER to early-type galaxies, and E+A galaxies lie between composite galaxies and Seyfert 2s in most cases. We conclude that different EPS models do derive different stellar populations, so that it is not reasonable to directly compare stellar populations estimated from different EPS models. To get reliable results, we should use the same EPS model for the compared samples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا