ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of R-Band Variability of L Dwarfs

37   0   0.0 ( 0 )
 نشر من قبل Sujan Sengupta
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report, for the first time, photometric variability of L dwarfs in $R$ band. Out of three L1 dwarfs (2MASS 1300+19, 2MASS 1439+19, and 2MASS 1658+70) observed, we have detected R band variability in 2MASS 1300+19 and 2MASS 1439+19. The objects exhibit variability of amplitude ranging from 0.01 mag to 0.02 mag. Object 2MASS 1658+70, turns out to be non-variable in both $R$ and $I$ band. However, more observations are needed to infer its variability. No periodic behaviour in the variability is found from the two L1 dwarfs that are variable. All the three L1 dwarfs have either negligible or no $H_{alpha}$ activity. In the absence of any direct evidence for the presence of sufficiently strong magnetic field, the detection of polarization at the optical favors the presence of dust in the atmosphere of L dwarfs. We suggest that the observed $R$ band photometric variability is most likely due to atmospheric dust activity.



قيم البحث

اقرأ أيضاً

We present textit{Spitzer Space Telescope} variability monitoring observations of three low-gravity L dwarfs with previous detections of variability in the near-IR, 2MASS J0045+16, 2MASS J0501-00 and 2MASS J1425-36. We detect significant, periodic va riability in two of our targets, 2MASS J0045+16 and 2MASS J0501-00. We do not detect variability in 2MASS J1425-36. Combining our new rotation periods with rotational velocities, we calculate inclination angles of $22pm1^{circ}$, ${60^{+13 }_{-8}} ^{circ}$ and $52^{+19}_{-13}~^{circ}$ for 2MASS J0045+16, 2MASS J0501-00 and 2MASS J1425-36 respectively. Our three new objects are consistent with the tentative relations between inclination, amplitude and color anomaly previously reported. Objects with the highest variability amplitudes are inclined equator-on, while the maximum observed amplitude decreases as the inclination angle decreases. We also find a correlation between the inclination angle and $(J-K)_{mathrm{2MASS}}$ color anomaly for the sample of objects with measured inclinations. Compiling the entire sample of brown dwarfs with textit{Spitzer} variability detections, we find no enhancement in amplitude for young, early-L dwarfs compared to the field dwarf population. We find a possible enhancement in amplitude of low-gravity late-L dwarfs at $4.5~mu$m. We do not find a correlation between amplitude ratio and spectral type for field dwarfs or for the young population. Finally, we compile the rotation periods of a large sample of brown dwarfs with ages 1 Myr to 1 Gyr and compare the rotation rates predicted by evolutionary models assuming angular momentum conservation. We find that the rotation rates of the current sample of brown dwarfs fall within the expected range set by evolutionary models and breakup limits.
Observational facilities allow now the detection of optical and IR spectra of young M- and L-dwarfs. This enables empirical comparisons with old M- and L- dwarfs, and detailed studies in comparison with synthetic spectra. While classical stellar atmo sphere physics seems perfectly appropriate for old M-dwarfs, more physical and chemical processes, cloud formation in particular, needs to be modelled in the substellar regime to allow a detailed spectral interpretation. Not much is known so far about the details of the inset of cloud formation at the spectral transition region between M and L dwarfs. Furthermore there is observational evidence for diversity in the dust properties of objects having the same spectral type. Do we understand these differences? The question is also how young M- and L-dwarfs need to be classified, which stellar parameter do they have and whether degenerations in the stellar parameter space due to the changing atmosphere physics are present, like in the L-T transition region. The Splinter was driven by these questions which we will use to encourage interactions between observation and theory. Given the recent advances, both in observations and spectral modelling, an intensive discussion between observers and theoreticians will create new synergies in our field.
We present Keck near-infrared imaging of three binary L dwarf systems, all of which are likely to be sub-stellar. Two are lithium dwarfs, and a third exhibits an L7 spectral type, making it the coolest binary known to date. All have component flux ra tios near 1 and projected physical separations between 5 and 10 AU, assuming distances of 18 to 26 pc from recent measurements of trigonometric parallax. These surprisingly similar binaries represent the sole detections of companions in ten L dwarf systems which were analyzed in the preliminary phase of a much larger dual-epoch imaging survey. The detection rate prompts us to speculate that binary companions to L dwarfs are common, that similar-mass systems predominate, and that their distribution peaks at radial distances in accord both with M dwarf binaries and with the radial location of Jovian planets in our own solar system. To fully establish these conjectures against doubts raised by biases inherent in this small preliminary survey, however, will require quantitative analysis of a larger volume-limited sample which has been observed with high resolution and dynamic range.
We have conducted a photometric monitoring program of 3 field late-L brown dwarfs looking for evidence of non-axisymmetric structure or temporal variability in their photospheres. The observations were performed using Spitzer/IRAC 4.5 and 8 micron ba ndpasses and were designed to cover at least one rotational period of each object. One-sigma RMS (root mean squared) uncertainties of less than 3 mmag at 4.5 micron and around 9 mmag at 8 micron were achieved. Two out of the three objects studied exhibit some modulation in their light curves at 4.5 micron - but not 8 micron - with periods of 7.4 hr and 4.6 hr and peak-to-peak amplitudes of 10 mmag and 8 mmag. Although the lack of detectable 8 micron variation suggests an instrumental origin for the detected variations, the data may nevertheless still be consistent with intrinsic variability since the shorter wavelength IRAC bandpasses probe more deeply into late L dwarf atmospheres than the longer wavelengths. A cloud feature occupying a small percentage (1-2 %) of the visible hemisphere could account for the observed amplitude of variation. If, instead, the variability is indeed instrumental in origin, then our non-variable L dwarfs could be either completely covered with clouds or objects whose clouds are smaller and uniformly distributed. Such scenarios would lead to very small photometric variations. Followup IRAC photometry at 3.6 and 5.8 micron bandpasses should distinguish between the two cases. In any event, the present observations provide the most sensitive search to date for structure in the photospheres of late-L dwarfs at mid-IR wavelengths, and our photometry provides stringent upper limits to the extent to which the photospheres of these transition L dwarfs are structured.
We use the Wide Field Camera 3 on the {sl Hubble Space Telescope} to spectrophotometrically monitor the young L7.5 companion HD~203030B. Our time series reveal photometric variability at 1.27,$mu$m and 1.39,$mu$m on time scales compatible with rotati on. We find a rotation period of $7.5^{+0.6}_{-0.5}$ h: comparable to those observed in other brown dwarfs and planetary-mass companions younger than 300 Myr. We measure variability amplitudes of $1.1pm0.3%$ (1.27,$mu$m) and $1.7pm0.4%$ (1.39,$mu$m), and a phase lag of 56$^circpm$28$^circ$ between the two light curves. We attribute the difference in photometric amplitudes and phases to a patchy cloud layer that is sinking below the level where water vapor becomes opaque. HD 203030B and the few other known variable young late-L dwarfs are unlike warmer (earlier-type and/or older) L dwarfs, for which variability is much less wavelength-dependent across the 1.1--1.7$mu$m region. We further suggest that a sinking of the top-most cloud deck below the level where water or carbon monoxide gas become opaque may also explain the often enhanced variability amplitudes of even earlier-type low-gravity L dwarfs. Because these condensate and gas opacity levels are already well-differentiated in T dwarfs, we do not expect the same variability amplitude enhancement in young vs. old T dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا