ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulsar Physics at Low Frequencies

119   0   0.0 ( 0 )
 نشر من قبل Jean Eilek
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent work has made it clear that the ``standard model of pulsar radio emission cannot be the full answer. Some fundamental assumptions about the magnetic field and plasma flow in the radio-loud region have been called into question by recent observational and theoretical work, but the solutions to the problems posed are far from clear. It is time to formulate and carry out new observational campaigns designed to address these problems; sensitive low-frequency observations will an important part of such a campaign. Because pulsars are strong at low frequencies, we believe there will be a good number of candidates even for high-time-resolution single pulse work, as well as mean profile and integrated spectrum measurements. Such data can push the envelope of current models, test competing theories of the radio loud region, and possibly provide direct measures of the state of the emitting plasma.



قيم البحث

اقرأ أيضاً

80 - Olaf Wucknitz 2019
Interstellar scattering is known to broaden distant objects spatially and temporally. The latter aspect is difficult to analyse, unless the signals carry their own time stamps. Pulsars are so kind to do us this favour. Typically the signature is a br oadened image with little or no substructure and a similarly smooth exponential scattering tail in the temporal profile. The case of the pulsar B1508+55 is special: The profile shows additional components that are moving relative to the main pulse with time. We use low-frequency VLBI with LOFAR to test the hypothesis that these components are actually such scattering-induced echoes, by trying to detect the expected angular offset. Using international stations (plus the Kilpisjarvi Atmospheric Imaging Receiver Array KAIRA) and the phased-up core of the LOFAR array, we can do interferometry at high resolution in time and space. This contribution presents a selection of results from an ongoing large-scale monitoring campaign. We can not only detect the offset, but even image a full string of echoes, and relate the positions with delays. What we find is apparently consistent with scattering by highly aligned components in a single screen at a distance of 120 pc. Further investigations will improve our understanding of the scattering process as basis of using the scattering-induced subimages as arms of a giant interstellar interferometer with insanely high resolution.
The rare intermittent pulsars pose some of the most challenging questions surrounding the pulsar emission mechanism, but typically have relatively minimal low-frequency ($lesssim$ 300 MHz) coverage. We present the first low-frequency detection of the intermittent pulsar J1107-5907 with the Murchison Widefield Array (MWA) at 154 MHz and the simultaneous detection from the recently upgraded Molonglo Observatory Synthesis Telescope (UTMOST) at 835 MHz, as part of an on-going observing campaign. During a 30-minute simultaneous observation, we detected the pulsar in its bright emission state for approximately 15 minutes, where 86 and 283 pulses were detected above a signal-to-noise threshold of 6 with the MWA and UTMOST, respectively. Of the detected pulses, 51 had counterparts at both frequencies and exhibited steep spectral indices for both the bright main pulse component and the precursor component. We find that the bright state pulse energy distribution is best parameterised by a log-normal distribution at both frequencies, contrary to previous results which suggested a power law distribution. Further low-frequency observations are required in order to explore in detail aspects such as pulse-to-pulse variability, intensity modulations and to better constrain the signal propagation effects due to the interstellar medium and intermittency characteristics at these frequencies. The spectral index, extended profile emission covering a large fraction of pulse longitude, and the broadband intermittency of PSR J1107-5907 suggests that future low-frequency pulsar searches, for instance those planned with SKA-Low, will be in an excellent position to find and investigate new pulsars of this type.
50 - D. Jones , R. Allen , J. Basart 2000
At sufficiently low frequencies, no ground-based radio array will be able to produce high resolution images while looking through the ionosphere. A space-based array will be needed to explore the objects and processes which dominate the sky at the lo west radio frequencies. An imaging radio interferometer based on a large number of small, inexpensive satellites would be able to track solar radio bursts associated with coronal mass ejections out to the distance of Earth, determine the frequency and duration of early epochs of nonthermal activity in galaxies, and provide unique information about the interstellar medium. This would be a space-space VLBI mission, as only baselines between satellites would be used. Angular resolution would be limited only by interstellar and interplanetary scattering.
61 - W. M. Lane 2003
We present new, low-frequency images of the powerful FR I radio galaxy Hydra A (3C 218). Images were made with the Very Large Array (VLA) at frequencies of 1415, 330, and 74 MHz, with resolutions on the order of 20. The morphology of the source is se en to be more complex and even larger than previously known, and extends nearly 8 (530 kpc) in a North-South direction. The southern lobe is bent to the east and extends in that direction for nearly 3 (200 kpc). In addition, we find that the northern lobe has a flatter spectral slope than the southern lobe, consistent with the appearance of greater confinement to the south. We measure overall spectral indices alpha^{330}_{74} = -0.83 and alpha^{1415}_{330} = -0.89.
The LWA will be well suited to address many important questions about the physics and astrophysics of extragalactic synchrotron sources. Good low-frequency data will enable major steps forward in our understanding of radio galaxy physics, of the plas ma in clusters of galaxies, and of active objects in the high-redshift universe. Such data will also be important in answering some basic questions about the physics of synchrotron-emitting plasmas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا