ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton X-ray spectroscopy of the high-mass X-ray binary 4U1700-37 at low flux

63   0   0.0 ( 0 )
 نشر من قبل Arjen van der Meer
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. van der Meer




اسأل ChatGPT حول البحث

We present results of a monitoring campaign of the high-mass X-ray binary system 4U 1700-37/HD 153919, carried out with XMM-Newton in February 2001. The system was observed at four orbital phase intervals, covering 37% of one 3.41-day orbit. The lightcurve includes strong flares, commonly observed in this source. We focus on three epochs in which the data are not affected by photon pile up: the eclipse, the eclipse egress and a low-flux interval in the lightcurve around orbital phase phi ~0.25. The high-energy part of the continuum is modelled as a direct plus a scattered component, each represented by a power law with identical photon index (alpha ~1.4), but with different absorption columns. We show that during the low-flux interval the continuum is strongly reduced, probably due to a reduction of the accretion rate onto the compact object. A soft excess is detected in all spectra, consistent with either another continuum component originating in the outskirts of the system or a blend of emission lines. Many fluorescence emission lines from near-neutral species and discrete recombination lines from He- and H-like species are detected during eclipse and egress. The detection of recombination lines during eclipse indicates the presence of an extended ionised region surrounding the compact object. The observed increase in strength of some emission lines corresponding to higher values of the ionisation parameter xi further substantiates this conclusion.



قيم البحث

اقرأ أيضاً

215 - J. S. Clark 2002
We present the results of a detailed non-LTE analysis of the UV and optical spectrum of the O6.5Iaf+ star HD153919 - the mass donor in the high-mass X-ray binary 4U1700-37. Given the eclipsing nature of the system these results allow us to determine the most likely masses of both components of the binary via Monte Carlo simulations. These suggest a mass for HD153919 of 58+/-11M_sun - implying the initial mass of the companion was rather high (>60 M_sun). The most likely mass for the compact companion is found to be 2.44+/-0.27M_sun, with only 3.5 per cent of the trials resulting in a mass less than 2.0M_sun and none less than 1.65M_sun. Our observational data is inconsistent with the canonical neutron star mass and the lowest black hole mass observed (>4.4M_sun; Nova Vel). Significantly changing observational parameters can force the compact object mass into either of these regimes but this results in the O-star mass changing by factors of greater than 2, well beyond the limits determined from its evolutionary state and surface gravity. The low mass of the compact object implies that it is difficult to form high mass black holes through both the Case A & B mass transfer channels and, if the compact object is a neutron star, would significantly constrain the high density nuclear EoS
131 - A. Ankay 2001
Based on its Hipparcos proper motion, we propose that the high-mass X-ray binary HD153919/4U1700-37 originates in the OB association Sco OB1. At a distance of 1.9 kpc the space velocity of 4U1700-37 with respect to Sco OB1 is 75 km/s. This runaway ve locity indicates that the progenitor of the compact X-ray source lost about 7 Msun during the (assumed symmetric) supernova explosion. The systems kinematical age is about 2 +/- 0.5 million years which marks the date of the supernova explosion forming the compact object. The present age of Sco OB1 is <8 Myr; its suggested core, NGC 6231, seems to be somewhat younger (~5 Myr). If HD153919/4U1700-37 was born as a member of Sco OB1, this implies that the initially most massive star in the system terminated its evolution within <6 million years, corresponding to an initial mass >30 Msun. With these parameters the evolution of the binary system can be constrained.
We present an analysis of the first observation of the iconic High Mass X-ray Binary so with the chandra High Energy Transmission Gratings during an X-ray eclipse. The goal of the observation was to study the structure/physical conditions in the clum py stellar wind through high resolution spectroscopy. We find that: a) emission line brightness from K shell transitions, corresponding to near neutral species, directly correlates with continuum illumination. However, these lines do not greatly diminish during eclipse. This is readily explained if fluorescence K$alpha$ emission comes from the bulk of the wind. b) The highly ionised Fexxv and Fexxvi Ly$alpha$ diminish during eclipse. Thus, they must be produced in the vicinity of the compact object where $log xi >3$. c) to describe the emission line spectrum, the sum of two self consistent photo ionisation models with low ionisation ($log xisim -1$) and high ionisation ($log xisim 2.4$) is required. From their emission measures, the clump-to-interclump density ratio can be estimated to be $n_c/n_isim 300$. To fit the complex He-like ion{Si}{xiii}{} profile, the plasma requires a broadening with $v_{rm bulk}sim 840$ km s$^{-1}$. Reproducing the observed $rapprox f$ line fluxes requires the addition of a third collisionally ionised plasma. d) Emission lines widths appear unresolved at the textsc{hetg} gratings resolution with exception of Silicon. There is no clear radial segregation between (quasi)neutral and ionised species, consistent with cold wind clumps interspersed in a hot rarefied interclump medium.
We report on two XMM-Newton observations of the low-mass X-ray binary X 1254-690. During an XMM-Newton observation of the low-mass X-ray binary in 2001 January a deep X-ray dip was seen while in a second observation one year later no dips were eviden t. The 0.5-10 keV EPIC spectra from both non-dipping intervals are very similar being modeled by a disk-blackbody and a power-law continuum with additional structure around 1 keV and narrow absorption features at 7.0 keV and 8.2 keV which are identified with the K alpha and K beta absorption lines of Fe XXVI. The low-energy structure may be modeled as a 175 eV (sigma) wide emission line at ~0.95 keV. This feature is probably the same structure that was modeled as an absorption edge in an earlier BeppoSAX observation. The absorption line properties show no obvious dependence on orbital phase and are similar in both observations suggesting that the occurrence of such features is not directly related to the presence of dipping activity. Narrow Fe absorption features have been observed from the two superluminal jet sources GRO J1655-40 and GRS 1915+105, and the four low-mass X-ray binaries GX 13+1, MXB 1658-298, X 1624-490 and X 1254-690. Since the latter 3 sources are dipping sources, which are systems viewed close to the accretion disk plane, and the two microquasars are thought to be viewed at an inclination of ~70 degrees, this suggests that these features are more prominent when viewed at high-inclination angles. This, together with the lack of any orbital dependence, implies a cylindrical geometry for the absorbing material.
100 - L. Boirin 2004
We report the discovery of narrow Fe XXV and Fe XXVI K alpha X-ray absorption lines at 6.65 and 6.95 keV in the persistent emission of the dipping low-mass X-ray binary (LMXB) XB 1916-053 during an XMM-Newton observation performed in September 2002. In addition, there is marginal evidence for absorption features at 1.48 keV, 2.67 kev, 7.82 keV and 8.29 keV consistent with Mg XII, S XVI, Ni XXVII K alpha and Fe XXVI K beta transitions, respectively. Such absorption lines from highly ionized ions are now observed in a number of high inclination (ie. close to edge-on) LMXBs, such as XB 1916-053, where the inclination is estimated to be between 60-80 degrees. This, together with the lack of any orbital phase dependence of the features (except during dips), suggests that the highly ionized plasma responsible for the absorption lines is located in a cylindrical geometry around the compact object. Using the ratio of Fe XXV and Fe XXVI column densities, we estimate the photo-ionization parameter of the absorbing material to be 10^{3.92} erg cm s^{-1}. Only the Fe XXV line is observed during dipping intervals and the upper-limits to the Fe XXVI column density are consistent with a decrease in the amount of ionization during dipping intervals. This implies the presence of cooler material in the line of sight during dipping. We also report the discovery of a 0.98 keV absorption edge in the persistent emission spectrum. The edge energy decreases to 0.87 keV during deep dipping intervals. The detected feature may result from edges of moderately ionized Ne and/or Fe with the average ionization level decreasing from persistent emission to deep dipping. This is again consistent with the presence of cooler material in the line of sight during dipping.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا