ﻻ يوجد ملخص باللغة العربية
We present results of a monitoring campaign of the high-mass X-ray binary system 4U 1700-37/HD 153919, carried out with XMM-Newton in February 2001. The system was observed at four orbital phase intervals, covering 37% of one 3.41-day orbit. The lightcurve includes strong flares, commonly observed in this source. We focus on three epochs in which the data are not affected by photon pile up: the eclipse, the eclipse egress and a low-flux interval in the lightcurve around orbital phase phi ~0.25. The high-energy part of the continuum is modelled as a direct plus a scattered component, each represented by a power law with identical photon index (alpha ~1.4), but with different absorption columns. We show that during the low-flux interval the continuum is strongly reduced, probably due to a reduction of the accretion rate onto the compact object. A soft excess is detected in all spectra, consistent with either another continuum component originating in the outskirts of the system or a blend of emission lines. Many fluorescence emission lines from near-neutral species and discrete recombination lines from He- and H-like species are detected during eclipse and egress. The detection of recombination lines during eclipse indicates the presence of an extended ionised region surrounding the compact object. The observed increase in strength of some emission lines corresponding to higher values of the ionisation parameter xi further substantiates this conclusion.
We present the results of a detailed non-LTE analysis of the UV and optical spectrum of the O6.5Iaf+ star HD153919 - the mass donor in the high-mass X-ray binary 4U1700-37. Given the eclipsing nature of the system these results allow us to determine
Based on its Hipparcos proper motion, we propose that the high-mass X-ray binary HD153919/4U1700-37 originates in the OB association Sco OB1. At a distance of 1.9 kpc the space velocity of 4U1700-37 with respect to Sco OB1 is 75 km/s. This runaway ve
We present an analysis of the first observation of the iconic High Mass X-ray Binary so with the chandra High Energy Transmission Gratings during an X-ray eclipse. The goal of the observation was to study the structure/physical conditions in the clum
We report on two XMM-Newton observations of the low-mass X-ray binary X 1254-690. During an XMM-Newton observation of the low-mass X-ray binary in 2001 January a deep X-ray dip was seen while in a second observation one year later no dips were eviden
We report the discovery of narrow Fe XXV and Fe XXVI K alpha X-ray absorption lines at 6.65 and 6.95 keV in the persistent emission of the dipping low-mass X-ray binary (LMXB) XB 1916-053 during an XMM-Newton observation performed in September 2002.