ﻻ يوجد ملخص باللغة العربية
Cluster plasmas are magnetised already at very low magnetic field strength. Low collisionality implies that conservation of the first adiabatic invariant results in an anisotropic viscous stress (Braginskii viscosity) or, equivalently, anisotropic plasma pressure. This triggers firehose and mirror instabilities, which have growth rates proportional to the wavenumber down to scales of the order of ion Larmor radius. This means that MHD equations with Braginskii viscosity are not well posed and fully kinetic description is necessary. In this paper, we review the basic picture of small-scale dynamo in the cluster plasma and attempt to reconcile it with the existence of plasma instabilities at collisionless scales.
We present results from the first 3D kinetic numerical simulation of magnetorotational turbulence and dynamo, using the local shearing-box model of a collisionless accretion disc. The kinetic magnetorotational instability grows from a subthermal magn
A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kineti
The nature of the turbulent energy transfer rate is studied using direct numerical simulations of weakly collisional space plasmas. This is done comparing results obtained from hybrid Vlasov-Maxwell simulations of colissionless plasmas, Hall-magnetoh
Plasma turbulence is ubiquitous in space and astrophysical plasmas, playing an important role in plasma energization, but the physical mechanisms leading to dissipation of the turbulent energy remain to be definitively identified. Kinetic simulations
Nonthermal relativistic plasmas are ubiquitous in astrophysical systems like pulsar wind nebulae and active galactic nuclei, as inferred from their emission spectra. The underlying nonthermal particle acceleration (NTPA) processes have traditionally