ﻻ يوجد ملخص باللغة العربية
We derive a variety of physical parameters including star formation rates (SFRs), dust attenuation and burst mass fractions for 6472 galaxies observed by the Galaxy Evolution Explorer (GALEX) and present in the SDSS DR1 main spectroscopic sample. Parameters are estimated in a statistical way by comparing each observed broad-band SED (two GALEX and five SDSS bands) with an extensive library of model galaxy SEDs, which cover a wide range of star formation histories and include stochastic starbursts. We compare the constraints derived using SDSS bands only with those derived using the combination of SDSS and GALEX photometry. We find that the addition of the GALEX bands leads to significant improvement in the estimation of both the dust optical depth and the star formation rate over timescales of 100 Myr to 1 Gyr in a galaxy. We are sensitive to SFRs as low as 10^{-3} M_sun/yr, and we find that low levels of star formation (SF) are mostly associated with early-type, red galaxies. The least massive galaxies have ratios of current to past-averaged SF rates (b-parameter) consistent with constant SF over a Hubble time. For late-type galaxies, this ratio on average decreases with mass. We find that b correlates tightly with NUV-r color, implying that the SF history of a galaxy can be constrained on the basis of the NUV-r color alone. The fraction of galaxies that have undergone a significant starburst episode within the last 1 Gyr steeply declines with mass-from ~20% for galaxies with ~10^8 M_sun to ~5% for ~10^11 M_sun galaxies.
The majority of galaxies with current star-formation rates (SFRs), SFRo >= 10^-3 Msun/yr, in the Local Cosmological Volume where observations should be reliable, have the property that their observed SFRo is larger than their average star formation r
We investigate the star formation histories (SFHs) of massive red spiral galaxies with stellar mass $M_ast>10^{10.5}M_odot$, and make comparisons with blue spirals and red ellipticals of similar masses. We make use of the integral field spectroscopy
We analyze a volume-limited sample of massive bulge-dominated galaxies with data from both the Sloan Digital Sky Survey and the Galaxy Evolution Explorer (GALEX) satellite. The galaxies have central velocity dispersions greater than 100 km/s and stel
SPICA is one of the key projects for the future. Not only its instrument suite will open up a discovery window but they will also allow to physically understand some of the phenomena that we still do not understand in the high-redshift universe. Usin
We develop and implement an inclination-dependent attenuation prescription for spectral energy distribution (SED) fitting and study its impact on derived star-formation histories. We apply our prescription within the SED fitting code Lightning to a c