ﻻ يوجد ملخص باللغة العربية
We present the current status of the SuperWASP project, a Wide Angle Search for Planets. SuperWASP consists of up to 8 individual cameras using ultra-wide field lenses backed by high-quality passively cooled CCDs. Each camera covers 7.8 x 7.8 sq degrees of sky, for nearly 500 sq degrees of sky coverage. SuperWASP I, located in LaPalma, is currently operational with 5 cameras and is conducting a photometric survey of a large numbers of stars in the magnitude range ~7 to 15. The collaboration has developed a custom-built reduction pipeline and aims to achieve better than 1 percent photometric precision. The pipeline will also produce well sampled light curves for all the stars in each field which will be used to detect: planetary transits, optical transients, and track Near-Earth Objects. Status of current observations, and expected rates of extrasolar planetary detections will be presented. The consortium members, institutions, and further details can be found on the web site at: http://www.superwasp.org.
The Magnetism in Massive Stars (MiMeS) Project is a consensus collaboration among many of the foremost international researchers of the physics of hot, massive stars, with the basic aim of understanding the origin, evolution and impact of magnetic fi
The SuperWASP Cameras are wide-field imaging systems sited at the Observatorio del Roque de los Muchachos on the island of La Palma in the Canary Islands, and the Sutherland Station of the South African Astronomical Observatory. Each instrument has a
We give an overview of the QPACE project, which is pursuing the development of a massively parallel, scalable supercomputer for LQCD. The machine is a three-dimensional torus of identical processing nodes, based on the PowerXCell 8i processor. The no
Other the past few years we have developed a monolithic CMOS pixel detector design for the ILC in collaboration with the SARNOFF Corporation. The unique feature of this design is the recorded time tag for each hit, allowing assignment of the hit to a
The TORCH time-of-flight detector will provide particle identification between 2-10 GeV/c momentum over a flight distance of 10 m, and is designed for large-area coverage, up to 30 m^2. A 15 ps time-of-flight resolution per incident particle is antic