ﻻ يوجد ملخص باللغة العربية
Projected rotational velocities have been measured for 216 B0--B9 stars in the rich, dense h and chi Persei double cluster, and compared with the distribution of rotational velocities for a sample of field stars having comparable ages and masses. For stars that are relatively little evolved from their initial locations on the Zero Age Main Sequence (3-5 solar masses) the mean vsini measured for the h and chi Per sample is slightly more than 2 times larger than the mean determined for field stars of comparable mass, and the cluster and field vsini distributions differ with a high degree of significance. For somewhat more evolved stars with masses in the range 5-9 solar masses, the mean vsini in h and chi Per is 1.5 times that of the field; the vsini distributions differ as well, but with a lower degree of statistical significance. For stars that have evolved significantly from the ZAMS (those with masses in the range 9-15 solar masses), the cluster and field star means and distributions are only slightly different. We argue that both the higher rotation rates and the pattern of rotation speeds as a function of mass that differentiate main sequence B stars in h and chi Per from their field analogs were likely imprinted during the star formation process. We speculate that these differences may reflect the effects of the higher accretion rates that theory suggests are characteristic of regions that give birth to dense clusters, namely: (a) higher initial rotation speeds; (b) higher initial radii along the stellar birthline, resulting in greater spinup between the birthline and the ZAMS; and (c) a more pronounced maximum in the birthline radius-mass relationship that results in differentially greater spinup for stars that become mid- to late- B stars on the ZAMS.
We present blue optical spectra of 92 members of h and chi Per obtained with the WIYN telescope at Kitt Peak National Observatory. From these spectra, several stellar parameters were measured for the B-type stars, including V sin i, T_eff, log g_pola
We present molecular line observations of the star-forming cloud around RNO6 along with a newly discovered nearby molecular cloud that we name RNO6NW. Both clouds display striking similarities in their cometary structures and overall kinematics. By u
Massive clumps tend to fragment into clusters of cores and condensations, some of which form high-mass stars. In this work, we study the structure of massive clumps at different scales, analyze the fragmentation process, and investigate the possibili
We present high-resolution spectropolarimetric observations of the spectroscopic binary Chi Dra. Spectral lines in the spectrum of the main component Chi Dra A show variable Zeeman displacement, which confrms earlier suggestions about the presence of
We present a Nobeyama 45 m Radio Telescope map and Australia Telescope Compact Array pointed observations of N2H+ 1-0 emission towards the clustered, low mass star forming Oph B Core within the Ophiuchus molecular cloud. We compare these data with pr