ﻻ يوجد ملخص باللغة العربية
We present results of new Monte Carlo calculations made with the DIRTY code of radiative transfer of stellar and scattered radiation for a dusty giant late-type galaxy like the Milky Way, which illustrate the effect of the attenuation of stellar light by internal dust on the integrated photometry of the individual bulge and disk components. Here we focus on the behavior of the attenuation function, the color excess, and the fraction of light scattered or directly transmitted towards the outside observer as a function of the total amount of dust and the inclination of the galaxy, and the structure of the dusty interstellar medium (ISM) of the disk. We confirm that dust attenuation produces qualitatively and quantitatively different effects on the integrated photometry of bulge and disk, whatever the wavelength. In addition, we find that the structure of the dusty ISM affects more sensitively the observed magnitudes than the observed colors of both bulge and disk. Finally, we show that the contribution of the scattered radiation to the total monochromatic light received by the outside observer is significant, particularly at UV wavelengths, even for a two-phase, clumpy, dusty ISM. Thus understanding dust scattering properties is fundamental for the interpretation of extragalactic observations in the rest-frame UV.
Combining Monte Carlo radiative transfer simulations and accurate 2D bulge/disc decompositions, we present a new study to investigate the effects of dust attenuation on the apparent structural properties of the disc and bulge of spiral galaxies. We f
The dynamical evolution of super star clusters has been investigated in dark matter halos depicted with a cuspy- or soft-core density profile. The simulations show that (1) exponential bulges with central cusps form in both cases;(2) distinctive bulg
ABRIDGED: We use HSTACS and NICMOS imaging to study the structure and colors of a sample of nine late-type spirals. We find: (1) A correlation between bulge and disks scale-lengths, and a correlation between the colors of the bulges and those of the
Spiral galaxies have most of their stellar mass in a large rotating disk, and only a modest fraction in a central spheroidal bulge. This poses a major challenge for cosmological models of galaxy formation. Galaxies form at the centre of dark matter h
Aims: We compare the far-infrared to sub-millimetre dust emission properties measured in high Galactic latitude cirrus with those determined in a sample of 204 late-type DustPedia galaxies. The aim is to verify if it is appropriate to use Milky Way d