ﻻ يوجد ملخص باللغة العربية
Recently, we have developed and calibrated the Synthetic Field Method to derive total extinction through disk galaxies. The method is based on the number counts and colors of distant background field galaxies that can be seen through the foreground object. Here, we investigate how large (10-m) and very large (20 to 30-m), diffraction-limited, optical and infrared telescopes in space would improve the detection of background galaxies behind Local Group objects, including the Galactic bulge. We find that, besides and perhaps more important than telescope size, a well-behaved, well-characterized PSF would facilitate in general the detection of faint objects in crowded fields, and greatly benefit several other important research areas, like the search for extrasolar planets, the study of quasar hosts and, most relevant for this meeting, the surveying of nearby large scale structure in the Zone of Avoidance, in particular behind the Galactic bulge.
We study the dependence of the properties of group galaxies on the surrounding large-scale environment, using SDSS-DR7 data. Galaxies are ranked according to their luminosity within each group and classified morphologically by the Sersic index. We ha
Suzaku and Chandra X-ray observations detected a new cluster of galaxies, Suzaku J1759-3450, at a redshift z=0.13. It is located behind the Milky Way, and the high Galactic dust extinction renders it nearly invisible at optical wavelengths. We attemp
We present a three-dimensional study of the local (<100 h^-1} kpc) and the large scale (<1 h^{-1} Mpc) environment of the two main types of Seyfert AGN galaxies. For this purpose we use 48 Sy1 galaxies (with redshifts in the range 0.007<z<0.036) and
Recent observations of the fields surrounding a few Milky-Way-like galaxies in the local Universe have become deep enough to enable investigations of the predictions of the standard LCDM cosmological model down to small scales outside the Local Group
Based on the Sloan Digital Sky Survey DR6 (SDSS) and Millennium Simulation (MS) we investigate the alignment between galaxies and large-scale structure. For this purpose we develop two new statistical tools, namely the alignment correlation function