ﻻ يوجد ملخص باللغة العربية
In response to criticism by Momany et al. (2004), that the recently-identified Canis Major (CMa) overdensity could be simply explained by the Galactic warp, we present proof of the existence of a stellar population in the direction of CMa that cannot be explained by known Galactic components. By analyzing the radial distribution of counts of M-giant stars in this direction, we show that the Momany et al. (2004) warp model overestimates the number of stars in the Northern hemisphere, hence hiding the CMa feature in the South. The use of a better model of the warp has little influence on the morphology of the overdensity and clearly displays an excess of stars grouped at a distance of D=7.2pm 0.3 kpc. To lend further support to the existence of a population that does not belong to the Galactic disc, we present radial velocities of M-giant stars in the centre of the CMa structure that were obtained with the 2dF spectrograph at the AAT. The extra population shows a radial velocity of vr=109pm4 km/s, which is significantly higher than the typical velocity of the disc at the distance of CMa. This population also has a low dispersion (13pm4 km/s). The Canis Major overdensity is therefore highly unlikely to be due to the Galactic warp, adding weight to the hypothesis that we are observing a disrupting dwarf galaxy or its remnants. This leads to questions on what part of CMa was previously identified as the Warp and how to possibly disentangle the two structures.
We perform a critical re-analysis and discussion of recent results presented in the literature which interpret the CMa overdensity as the signature of an accreting dwarf galaxy or a new substructure within the Galaxy. Several issues are addressed. We
Proper-motion, star counts and photometric catalog simulations are used to explain the detected stellar over-density in the region of Canis Major (CMa), claimed to be the core of a disrupted dwarf galaxy (Martin et al. 2004, Bellazzini et al. 2003),
Our multi-epoch survey of ~20 sq. deg. of the Canis Major overdensity has detected only 10 RR Lyrae stars (RRLS). We show that this number is consistent with the number expected from the Galactic halo and thick disk populations alone, leaving no exce
(Abridged) We derive the structure of the Galactic stellar Warp and Flare using 2MASS RC and RGB stars, selected at mean heliocentric distances of 3, 7 and 17 kpc. Our results are: (i) a clear stellar warp signature is derived for the 3 selected ri
Recent observational evidence suggests that the Sagittarius dwarf galaxy represents the only major ongoing accretion event in the Galactic halo, accounting for the majority of stellar debris identified there. This paper summarizes the recent discover