ترغب بنشر مسار تعليمي؟ اضغط هنا

Organic molecules in protoplanetary disks around TTauri and HerbigAe stars

67   0   0.0 ( 0 )
 نشر من قبل Wing-Fai Thi
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The results of single-dish observations of low- and high-J transitions of selected molecules from protoplanetary disks around two TTauri stars (LkCa15 and TWHya) and two HerbigAe stars (HD163296 and MWC480) are reported. Simple molecules such as CO, 13CO, HCO+, CN and HCN are detected. Several lines of H2CO are found toward the TTauri star LkCa15 but not in other objects. No CH3OH has been detected down to abundances of 10E-9 - 10E-8 with respect to H2. SO and CS lines have been searched for without success. Line ratios indicate that the molecular emission arises from dense 10E6 - 10E8 cm-3 and moderately warm (T ~ 20-40K) intermediate height regions of the disk atmosphere, in accordance with predictions from models of the chemistry in disks. The abundances of most species are lower than in the envelope around the solar-mass protostar IRAS 16293-2422. Freeze-out and photodissociation are likely causes of the depletion. DCO+ is detected toward TWHya, but not in other objects. The high inferred DCO+/HCO+ ratio of ~0.035 is consistent with models of the deuterium fractionation in disks which include strong depletion of CO. The inferred ionization fraction in the intermediate height regions as deduced from HCO+ is at least 10E-11 - 10E-10, comparable to that derived for the midplane from recent H2D+ observations. (abridged abstract)



قيم البحث

اقرأ أيضاً

245 - Catherine Walsh 2014
(Abridged) Protoplanetary disks are vital objects in star and planet formation, possessing all the material which may form a planetary system orbiting the new star. We investigate the synthesis of complex organic molecules (COMs) in disks to constrai n the achievable chemical complexity and predict species and transitions which may be observable with ALMA. We have coupled a 2D model of a protoplanetary disk around a T Tauri star with a gas-grain chemical network including COMs. We compare compare synthesised line intensities and calculated column densities with observations and determine those COMs which may be observable in future. COMs are efficiently formed in the disk midplane via grain-surface chemical reactions, reaching peak grain-surface fractional abundances 1e-6 - 1e-4 that of the H nuclei number density. COMs formed on grain surfaces are returned to the gas phase via non-thermal desorption; however, gas-phase species reach lower fractional abundances than their grain-surface equivalents, 1e-12 - 1e-7. Including the irradiation of grain mantle material helps build further complexity in the ice through the replenishment of grain-surface radicals which take part in further grain-surface reactions. There is reasonable agreement with several line transitions of H2CO observed towards several T Tauri star-disk systems. The synthesised line intensities for CH3OH are consistent with upper limits determined towards all sources. Our models suggest CH3OH should be readily observable in nearby protoplanetary disks with ALMA; however, detection of more complex species may prove challenging. Our grain-surface abundances are consistent with those derived from cometary comae observations providing additional evidence for the hypothesis that comets (and other planetesimals) formed via the coagulation of icy grains in the Suns natal disk.
59 - W. F. Thi 2001
We present ISO-SWS observations of H2 pure-rotational line emission from the disks around low and intermediate mass pre-main-sequence stars as well as from young stars thought to be surrounded by debris disks. We detect `warm (T ~ 100-200 K) H2 gas a round many sources, including tentatively the debris-disk objects. The mass of this warm gas ranges from ~1E-4 Solar mass up to 8E-3 Solar mass, and can constitute a non-negligible fraction of the total disk mass. Complementary single-dish 12CO 3-2, 13CO 3-2 and 12CO 6-5 observations have been obtained as well. These transitions probe cooler gas at T ~ 20-80 K. Most objects show a double-peaked CO emission profile characteristic of a disk in Keplerian rotation, consistent with interferometer data on the lower-J lines. The ratios of the 12CO 3-2/ 13CO 3-2 integrated fluxes indicate that 12CO 3-2 is optically thick but that 13CO 3-2 is optically thin or at most moderately thick. The 13CO 3-2 lines have been used to estimate the cold gas mass. If a H2/CO conversion factor of 1E4 is adopted, the derived cold gas masses are factors of 10-200 lower than those deduced from 1.3 millimeter dust emission assuming a gas/dust ratio of 100,in accordance with previous studies. The warm gas is typically 1-10 % of the total mass deduced from millimeter continuum emission, but can increase up to 100% or more for the debris-disk objects. Thus, residual molecular gas may persist into the debris-disk phase. No significant evolution in the H2, CO or dust masses is found for stars with ages in the range of 1E6-1E7 years, although a decrease is found for the older debris-disk star beta Pictoris. Existing models fail to explain the amount of warm gas quantitatively.
We present the first part of our DARTTS-S (Disks ARound TTauri Stars with SPHERE) survey: Observations of 8 TTauri stars which were selected based on their strong (sub-)mm excesses using SPHERE / IRDIS polarimetric differential imaging (PDI) in the J and H bands. All observations successfully detect the disks, which appear vastly different in size, from $approx$80 au in scattered light to $>$400 au, and display total polarized disk fluxes between 0.06% and 0.89% of the stellar flux. For five of these disks, we are able to determine the three-dimensional structure and the flaring of the disk surface, which appears to be relatively consistent across the different disks, with flaring exponents $alpha$ between $approx$1.1 and $approx$1.6. We also confirm literature results w.r.t. the inclination and position angle of several of our disk, and are able to determine which side is the near side of the disk in most cases. While there is a clear trend of disk mass with stellar ages ($approx$1 Myr to $>$10 Myr), no correlations of disk structures with age were found. There are also no correlations with either stellar mass or sub-mm flux. We do not detect significant differences between the J and H bands. However, we note that while a high fraction (7/8) of the disks in our sample show ring-shaped sub-structures, none of them display spirals, in contrast to the disks around more massive Herbig Ae/Be stars, where spiral features are common.
257 - Catherine Walsh 2014
(Abridged) The birth environment of the Sun will have influenced the conditions in the pre-solar nebula, including the attainable chemical complexity, important for prebiotic chemistry. The formation and distribution of complex organic molecules (COM s) in a disk around a T Tauri star is investigated for two scenarios: (i) an isolated disk, and (ii) a disk irradiated externally by a nearby massive star. The chemistry is calculated along the accretion flow from the outer disk inwards using a comprehensive network. Two simulations are performed, one beginning with complex ices and one with simple ices only. For the isolated disk, COMs are transported without major alteration into the inner disk where they thermally desorb into the gas reaching an abundance representative of the initial assumed ice abundance. For simple ices, COMs efficiently form on grain surfaces under the conditions in the outer disk. Gas-phase COMs are released into the molecular layer via photodesorption. For the irradiated disk, complex ices are also transported inwards; however, they undergo thermal processing caused by the warmer conditions in the irradiated disk which tends to reduce their abundance along the accretion flow. For simple ices, grain-surface chemistry cannot synthesise COMs in the outer disk because the necessary grain-surface radicals, which tend to be particularly volatile, are not sufficiently abundant on the grain surfaces. Gas-phase COMs are formed in the inner region of the irradiated disk via gas-phase chemistry induced by the desorption of strongly bound molecules such as methanol; hence, the abundances are not representative of the initial molecular abundances injected into the outer disk. These results suggest that the composition of comets formed in isolated disks may differ from those formed in externally irradiated disks with the latter composed of more simple ices.
Dusty protoplanetary disks surrounding young low-mass stars are the birthplaces of planets. Studies of the evolutionary timescales of such disks provide important constraints on the timescales of planet formation. Binary companions, however, can infl uence circumstellar disk evolution through tidal interactions. In order to trace protoplanetary disks and their properties in young binary systems, as well as to study the effect of binarity on circumstellar disk lifetimes, we have carried out spatially resolved spectroscopy for several low-mass binaries in the well-known Orion Nebula Cluster. Br$_{gamma}$ emission, which we detect in several systems, is used as a tracer for the presence of an active accretion disk around a binary component. We find a paucity of actively accreting secondaries, and hence, evidence that in a binary system it is the lower mass component that disperses its disk faster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا