ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray luminous galaxies II. Chandra and XMM-Newton Observations of the composite galaxy IRAS20051-1117

174   0   0.0 ( 0 )
 نشر من قبل I. Georgantopoulos
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Chandra and XMM-Newton observations of the composite star-forming/Seyfert galaxy IRAS20051-1117. The X-ray imaging and spectral properties reveal the presence of an active nucleus. The Chandra image shows a strong nuclear point source (L(2-10 keV) ~ 4x10^{42} erg s-1). The nuclear X-ray source coincides with a bright, alsoun-resolved, UV source which appears in the xmm Optical Monitor images. The xmm and chandra spectrum is well represented by a power-law with a photon index of ~1.7-1.9 and a thermal component with a temperature of 0.2 keV. We also detect an Fe line at 6.4 keV with an equivalent width of ~0.3 keV, typical of the iron lines that have been detected in the X-ray spectra of classical AGN. We find no evidence for short-term variability in the X-ray light curves, while we detect no variations between the xmm and chandra observations which are separated by about 20 days. Optical spectroscopic observations which were performed ~2.5 months after the xmm observation show that the optical spectrum is dominated by a star-forming galaxy component, although a weak broad Halpha component is present, in agreement with the results from past observations. The lack of strong AGN signatures in the optical spectrum of the source can be explained by the dilution of the nuclear AGN emission by the nuclear star-forming component and the strong emission of the underlying, bright host galaxy.



قيم البحث

اقرأ أيضاً

We investigate the X-ray properties of three interacting luminous infrared galaxy systems. In one of these systems, IRAS 18329+5950, we resolve two separate sources. A second, IRAS 20550+1656, and third, IRAS 19354+4559, have only a single X-ray sour ce detected. We compare the observed emission to PSF profiles and determine that three are extended in emission. One is compact, which is suggestive of an AGN, although all of our profiles have large uncertainties. We then model the spectra to determine soft (0.5--2 keV) and hard (2--10 keV) luminosities for the resolved sources and then compare these to relationships found in the literature between infrared and X-ray luminosities for starburst galaxies. We obtain luminosities of $log(L_{textrm{soft}}/textrm{L}_{odot}) = 7.32,:7.06,:7.68$ and $log(L_{textrm{hard}}/textrm{L}_{odot}) = 7.33,: 7.07,: 7.88$ for IRAS 18329+5950, IRAS 19354+4559, and IRAS 20550+1656, respectively. These are intermediate to two separate predictions in the literature for star-formation-dominated sources. Our highest quality spectrum of IRAS 20550+1656 suggests super-solar abundance of alpha elements at $2sigma$ significance, with $log(frac{alpha}{alpha_{odot}}) = [alpha] = 0.4pm0.2$. This is suggestive of recent enrichment with Type II supernovae, consistent with a starburst environment. The X-ray properties of the target galaxies are most likely due to starbursts, but we cannot conclusively rule out AGN.
191 - A. J. Blustin 2003
We present an XMM-Newton observation of NGC 7469, including studies of the X-ray and UV variability, 0.2-10 keV spectral continuum, Fe K-alpha emission line and the first-ever high-resolution X-ray spectrum of the soft X-ray warm absorber. We compare the properties of this X-ray warm absorber with the UV warm absorber as seen in a FUSE observation one year previously. The 0.2-10 keV spectral continuum is best fitted by a power-law plus two blackbody model. An Fe K-alpha emission line is visible which consists of a single narrow component and is well-modelled by a simple gaussian. Narrow absorption and emission lines in the soft X-ray RGS spectrum demonstrate the existence of a multi-phase warm absorber with a range in log xi of ~ 2 to ~ -2 where xi is in erg cm s^-1. The warm absorber is blueshifted by several hundred km s^-1. The highest-ionisation phase of the absorber is the best constrained and has an overall equivalent Hydrogen column of order 10^20 cm^-2; we find that its ionisation parameter is consistent with that of the warm emitter which generates the narrow emission lines. We identify this high ionisation absorber with the low-velocity phase of the UV absorber observed by FUSE.
We investigate the levels of small scale structure in surface brightness images of the core of the X-ray bright cool-core galaxy cluster AWM 7. After subtraction of a model of the smooth cluster emission, we find a number of approximately radial surf ace brightness depressions which are not present in simulated images and are seen in both the Chandra and XMM-Newton data. The depressions are most strongly seen in the south of the cluster and have a magnitude of around 4 per cent in surface brightness. We see these features in both an energy band sensitive to the density (0.6 to 5 keV) and a band more sensitive to the pressure (3.5 to 7.5 keV). Histograms of surface brightness in the data, when compared to realisations of a smooth model, reveal stronger surface brightness variations. We use the Delta-variance technique to characterise the magnitude of the fluctuations as a function of length scale. We find that the spectrum in the 0.6 to 5 keV band is flatter than expected for Kolmogorov index fluctuations. If characterised by a power spectrum, on large scales it would have an index around -1.7, rather than -3.7. The implied 3D density fluctuations have a standard deviation of around 4 per cent. The implied 3D pressure variations are at most 4 per cent. Most of the longer-scale power in the density spectrum is contributed by the southern half of the cluster, where the depressions are seen. The density variations implied by the spectrum of the northern sector have a standard deviation of about 2 per cent.
Using new XMM and Chandra observations we present an analysis of the metal abundances of the hot gas within a radius of 100 kpc of the bright nearby galaxy group NGC 5044. Motivated by the inconsistent abundance and temperature determinations obtaine d by different observers for X-ray groups, we provide a detailed investigation of the systematic errors on the derived abundances considering the effects of the temperature distribution, calibration, plasma codes, bandwidth, Galactic Nh, and background rate. The iron abundance (Fe) drops from Fe ~1 solar within R ~50 kpc to Fe ~0.4 solar near R=100 kpc. This radial decline in Fe is highly significant: Fe=1.09 +/- 0.04 solar (stat) +/- 0.05 solar + 0.18 solar (sys) within R=48 kpc (5) compared to Fe=0.44 +/- 0.02 solar (stat) +/- 0.10 solar + 0.13 solar (sys) over R=48-96 kpc (5-10). The data rule out with high confidence a very sub-solar value for Fe within R=48 kpc confirming that previous claims of very sub-solar central Fe values in NGC 5044 were primarily the result of the Fe Bias: i.e., the incorrect assumption of spatially isothermal and single-phase gas when in fact temperature variations exist. Within R=48 kpc we obtain Si/Fe = 0.83 +/- 0.02 (stat) +/- 0.02 + 0.07 (sys) and S/Fe = 0.54 +/- 0.02 (stat) +/- 0.01 + 0.01 (sys) in solar units. These ratios are consistent with their values at larger radii and imply that SNIa have contributed ~80% of the iron mass within a 100 kpc radius of NGC 5044. This SNIa fraction is similar to the Sun and suggests an IMF similar to that of the Milky Way. At the very center (R ~2 kpc) the XMM and Chandra CCDs and the XMM RGS show that the Fe drops to ~50% of its value at immediately larger radius analogously to that seen in some galaxy clusters. (Abridged)
We describe X-ray observations with Chandra and XMM-Newton of 18 galaxy groups (M_group ~ 1-6x10^13 Msolar, z~0.05) from the Zurich Environmental Study (ZENS). We aim to establish the frequency and properties, unaffected by host galaxy dilution and o bscuration, of AGNs in central and satellite galaxy members, also as a function of halo-centric distance. X-ray point-source detections are reported for 22 of 177 observed galaxies, down to a limit of f_(0.5-8 keV) ~ 5x10^-15 erg cm^-2 s^-1, corresponding to a limiting luminosity of L_(0.5-8 keV)~3x10^40 erg s^-1. With the majority of the X-ray sources attributed to AGNs of low-to-moderate levels (L/L_Edd>~10^-4), we discuss the detection rate in the context of the occupation of AGNs to halos of this mass scale and redshift, and compare the structural/morphological properties between AGN-active and non-active galaxies of different rank and location within the group halos. We see a slight tendency for AGN hosts to have either relatively brighter/denser disks (or relatively fainter/diffuse bulges) than non-active galaxies of similar mass. At galaxy mass scales <10^11 Msolar, central galaxies appear to be a factor ~4 more likely to host AGNs than satellite galaxies of similar mass. This effect, coupled with the tendency for AGNs to reside in massive galaxies, explains the (weak) trend for AGNs to be preferentially found in the inner regions of groups, with no detectable trend with halo-centric distance in the frequency of AGNs within the satellite population. Finally, our data support other analyses in finding that the rate of decline with redshift of AGN activity in groups matches that of the global AGN population, indicating that either AGNs occur preferentially in groups, or that the evolution rate is independent of halo mass. These trends are of potential importance, and require X-ray coverage of a larger sample to be solidly confirmed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا