ترغب بنشر مسار تعليمي؟ اضغط هنا

The INTEGRAL LMXRB Monitoring Programme

60   0   0.0 ( 0 )
 نشر من قبل Volker Beckmann
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our collaboration is responsible for the study of a sample of 72 low mass X-ray binaries (LMXRB) using the INTEGRAL Core Programme data. In this paper we describe the monitoring programme we have started and the current variability and spectral results on a sample of 8 persistently bright LMXRBs hosting a neutron star (Z and Atoll sources). Current results show that among our sample of sources there seems to be no important difference in the variability of Z sources with respect to Atolls and the first colour-colour and hardness intensity diagrams built in the traditional energy bands display the expected patterns. Z sources seem to be harder than the bright Atolls of our sample (above 20 keV) and present no evident cut-off until about 50 keV. A hint of a non-thermal hard tail is seen in Sco X-1 with ISGRI and SPI, similarly to what was previously detected by DAmico et al. (2001) with RXTE. These results, even if preliminary, show the importance of such a programme and the potential underlying it to understand these sources as a class.



قيم البحث

اقرأ أيضاً

The Galactic Bulge region is a rich host of variable high-energy point sources. These sources include bright and relatively faint X-ray transients, X-ray bursters, persistent neutron star and black-hole candidate binaries, X-ray pulsars, etc.. We hav e a program to monitor the Galactic Bulge region regularly and frequently with the gamma-ray observatory INTEGRAL. As a service to the scientific community the high-energy light curves of all the active sources as well as images of the region are made available through the WWW. We show the first results of this exciting new program.
We introduce the GENJI program (Gamma-ray Emitting Notable AGN Monitoring by Japanese VLBI), which is a monitoring program of gamma-ray bright AGNs with the VERA array (VLBI Exploration of Radio Astrometry). The GENJI programme aims a dense monitorin g at 22 GHz towards the $gamma$-ray emitting active galactic nuclei (AGNs) to investigate the radio time variation of the core and possible ejection of new radio component, motion of jets, and their relation with the emission at other wavelengths especially in $gamma$-rays. Currently we are monitoring 8 $gamma$-ray-emitting notable AGNs (DA 55, 3C 84, M 87, PKS 1510-089, DA 406, NRAO 530, BL Lac, 3C 454.3) about once every two weeks. This programme is promising to trace the trend of radio time variation on shorter timescale than conventional VLBI monitoring programme and to provide complimentary data with them (e.g., MOJAVE, Boston University Blazar Project). In particular, we successfully coordinated quick follow-up observations after the GeV $gamma$-ray flare in NRAO 530 and 3C 454.3 reported by the Fermi Gamma-ray Space Telescope. Here we present the initial results of morphology and light curves for the first 7-month operation.
The Galactic bulge region is a rich host of variable high-energy point sources. Since 2005, February 17 we are monitoring the source activity in this region about every three days with INTEGRAL. Thanks to the large field of view, the imaging capabili ties and the sensitivity at hard X-rays, we are able to present for the first time a detailed homogeneous (hard) X-ray view of a sample of 76 sources in the Galactic bulge region. We describe the successful monitoring program and show the first results for a period of about one and a half year. We focus on the short (hour), medium (month) and long-term (year) variability in the 20-60 keV and 60-150 keV bands. When available, we discuss the simultaneous observations in the 3-10 keV and 10-25 keV bands. Per visibility season we detect 32/33 sources in the 20-60 keV band and 8/9 sources in the 60-150 keV band. On average, we find per visibility season one active bright (>~100 mCrab, 20-60 keV) black-hole candidate X-ray transient and three active weaker (<~25 mCrab, 20-60 keV) neutron star X-ray transients. Most of the time a clear anti-correlation can be seen between the soft and hard X-ray emission in some of the X-ray bursters. Hard X-ray flares or outbursts in X-ray bursters, which have a duration of the order of weeks, are accompanied by soft X-ray drops. On the other hand, hard X-ray drops can be accompanied by soft X-ray flares/outbursts. We found a number of new sources, IGR J17354-3255, IGR 17453-2853, IGR J17454-2703, IGR J17456-2901b, IGR J17536-2339, and IGR J17541-2252. We report here on some of the high-energy properties of these sources. The high-energy light curves of all the sources in the field of view, and the high-energy images of the region, are made available through the WWW at http://isdc.unige.ch/Science/BULGE/.
The brightest persistent Galactic black hole candidate close to the Galactic Centre, 1E 1740.7-2942, has long been observed with INTEGRAL. In this paper, we report on the long-term hard X-ray monitoring obtained during the first year of observations as part of the Galactic Centre Deep Exposure. We discuss the temporal and spectral behaviours in different energy bands up to 250 keV, as well as the hardness-flux correlations.
The Thousand Pulsar Array (TPA) project currently monitors about 500 pulsars with the sensitive MeerKAT radio telescope by using subarrays to observe multiple sources simultaneously. Here we define the adopted observing strategy, which guarantees tha t each target is observed long enough to obtain a high fidelity pulse profile, thereby reaching a sufficient precision of a simple pulse shape parameter. This precision is estimated from the contribution of the system noise of the telescope, and the pulse-to-pulse variability of each pulsar, which we quantify under some simplifying assumptions. We test the assumptions and choice of model parameters using data from the MeerKAT 64-dish array, Lovell and Parkes telescopes. We demonstrate that the observing times derived from our method produce high fidelity pulse profiles that meet the needs of the TPA in studying pulse shape variability and pulsar timing. Our method can also be used to compare strategies for observing large numbers of pulsars with telescopes capable of forming multiple subarray configurations. We find that using two 32-dish MeerKAT subarrays is the most efficient strategy for the TPA project. We also find that the ability to observe in different array configurations will become increasingly important for large observing programmes using the Square Kilometre Array telescope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا