ترغب بنشر مسار تعليمي؟ اضغط هنا

The profiles of the 3 to 12 $mu$m PAH features

206   0   0.0 ( 0 )
 نشر من قبل Els Peeters
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present spectra of the 3.3 $mu$m and 11.2 $mu$m PAH features of a large number of (extra-) galactic sources, obtained with ISO-SWS. Clear variations are present in the profiles of these features. The sources are classified independently based on the 3.3 and 11.2 $mu$m feature profiles and peak positions. Correlations between these classes and those based on the 6--9 $mu$m features (Peeters et al. 2002) are found. Also, these classifications depend on the type of object. The observed pronounced contrast in the spectral variations for the CH modes (3.3 and 11.2 $mu$m bands) versus the CC modes (6.2, 7.7 and 8.6 $mu$m bands) is striking : the peak wavelengths of the features attributed to CC modes vary by $sim$15--80 cm$^{-1}$, while for the CH modes the variations are $sim$4--6.5 cm$^{-1}$. We summarize existing laboratory data and theoretical calculations of PAH molecules and complexes. In contrast to the 6.2 and 7.7 $mu$m components which are attributed to PAH cations, the 3.3 $mu$m feature appears to originate in neutral and/or negatively charged PAHs. We attribute the variations in peak position and profile of these features to the composition of the PAH family. The variations in FWHM of the 3.3 $mu$m feature remains an enigma while those of the 11.2 $mu$m can be explained by anharmonicity and molecular structure. The possible origin of the observed contrast in profile variations between the CH modes and the CC modes is highlighted.



قيم البحث

اقرأ أيضاً

The PAH model predicts many weak emission features in the 1-5 $mu$m region that can resolve significant questions that it has faced since its inception in the mid-80s. These features contain fundamental information about the PAH population that is in accessible via the much stronger PAH bands in the 5-20 $mu$m region. Apart from the 3.3 $mu$m band and plateau, PAH spectroscopy across most of the 1-5 $mu$m region has been unexplored due to its low intrinsic intensity. ISO and Akari covered some of this wavelength range, but lacked the combined sensitivity and resolution to measure the predicted bands with sufficient fidelity. The spectroscopic capabilities of the NIRSpec instrument on board JWST will make it possible to measure and fully characterize many of the PAH features expected in this region. These include the fundamental, overtone and combination C-D and C$equiv$N stretching bands of deuterated PAHs, cyano-PAHs (PAH-C$equiv$ N), and the overtones and combinations of the strong PAH bands that dominate the 5-20 $mu$m region. These bands will reveal the amount of D tied up in PAHs, the PAH D/H ratio, the D distribution between PAH aliphatic and aromatic subcomponents, and delineate key stages in PAH formation and evolution on an object-by-object basis and within extended objects. If cyano-PAHs are present, these bands will also reveal the amount of cyano groups tied up in PAHs, determine the N/C ratio within that PAH subset, and distinguish between the bands near 4.5 $mu$m that arise from CD versus C$equiv$N.
Aims. The aim of this work is to further investigate the nature of PAH excitation and emission especially in the context of tracing star formation in a variety of extragalactic environments. Here we turn our attention to the energetic environment of the closest AGN in our sample, Centaurus A. Methods. Using ISAAC on the ESO VLT UT1 (Antu) we have made high spatial resolution 3.3 {mu}m imaging observations of the central kiloparsec of CenA. These observations have been compared with star formation tracers in the near- and mid-infrared, as well as with mid-infrared tracers of nuclear activity. Results. The nucleus is not devoid of PAH emission, implying that the PAH particles are not destroyed in the nucleus as might be expected for such a harsh environment. However, we see the feature to continuum ratio decrease towards the AGN. As well, the 3.3 {mu}m PAH feature emission generally traces the sites of star formation in Cen A, but in detail there are spatial offsets, consistent with an earlier study of the starburst galaxies NGC 253 and NGC 1808. However, the feature-to-continuum ratio does not drop at the positions of star formation as was previously seen in that earlier study. The cause for this difference remains uncertain. Finally, our data reveal possible evidence for a nearly face-on, circular or spiral, dust structure surrounding the nucleus.
The dielectric function of interstellar dust material is modeled using observations of extinction and polarization in the infrared, together with estimates for the mass of interstellar dust. The astrodust material is assumed to be a mix of amorphous silicates and other materials, including hydrocarbons producing an absorption feature at 3.4$mu$m. The detailed shape of the 10$mu$m polarization profile depends on the assumed porosity and grain shape, but the 10$mu$m spectropolarimetric data are not yet good enough to clearly favor one shape over another, nor to constrain the porosity. The expected 3.4$mu$m feature polarization is consistent with existing upper limits, provided the 3.4$mu$m absorption is preferentially located in grain surface layers; a separate population of non-aligned carbonaceous grains is not required. We predict the 3.4$mu$m polarization feature to be $(Delta p)_{3.4mu{rm m}}/p(10mu{rm m})approx 0.016$, just below current upper limits. Polarization by the same grains at submm wavelengths is also calculated.
We have studied the star-formation and AGN activity of massive galaxies in the redshift range $z=0.4-2$, which are detected in a deep survey field using the AKARI InfraRed (IR) astronomical satellite and {em Subaru} telescope toward the North Eclipti c Pole (NEP). The AKARI/IRC Mid-InfraRed (MIR) multiband photometry is used to trace their star-forming activities with the Polycyclic-Aromatic Hydrocarbon (PAH) emissions, which is also used to distinguish star-forming populations from AGN dominated ones and to estimate the Star Formation Rate (SFR) derived from their total emitting IR (TIR) luminosities. In combination with analyses of their stellar components, we have studied the MIR SED features of star-forming and AGN-harboring galaxies.
55 - S. Potin , S. Manigand , P. Beck 2020
We present here a new method to model the shape of the 3-{mu}m absorption band in the reflectance spectra of meteorites and small bodies. The band is decomposed into several OH/H2O components using Exponentially Modified Gaussian (EMG) profiles, as w ell as possible organic components using Gaussian profiles when present. We compare this model to polynomial and multiple Gaussian profile fits and show that the EMGs model returns the best rendering of the shape of the band, with significantly lower residuals. We also propose as an example an algorithm to estimate the error on the band parameters using a bootstrap method. We then present an application of the model to two spectral analyses of smectites subjected to different H2O vapor pressures, and present the variations of the components with decreasing humidity. This example emphasizes the ability of this model to coherently retrieve weak bands that are hidden within much stronger ones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا