ﻻ يوجد ملخص باللغة العربية
We report on the eclipse mapping analysis of an ensemble of light curves of the dwarf nova V2051 Oph with the aim to study the spatial distribution of its steady-light and flickering sources. The data are combined to derive the orbital dependency of the steady-light and the flickering components at two different brightness levels, named the faint and bright states. The differences in brightness are caused by long-term variations in the mass transfer rate from the secondary star. Eclipse maps of the steady-light show enhanced emission along the ballistic stream trajectory, in a clear evidence of gas stream overflow. We identify two different and independent sources of flickering in V2051 Oph. Low-frequency flickering arises in the overflowing gas stream and is associated to the mass transfer process. It maximum emission occurs at the position of closest approach of the gas stream to the white dwarf, and its spatial distribution changes in response to variations in mass transfer rate. High-frequency flickering originates in the accretion disk, showing a radial distribution similar to that of the steady-light maps and no evidence of emission from the hot spot, gas stream or white dwarf. This disk flickering component has a relative amplitude of about 3 per cent of the steady disk light, independent of disk radius and brightness state. If the disk flickering is caused by fluctuations in the energy dissipation rate induced by MHD turbulence, its relative amplitude lead to a viscosity parameter alpha= 0.1-0.2 at all radii for the quiescent disk. This value seems uncomfortably high to be accommodated by the disk instability model [abridged].
We report results of the eclipse mapping analysis of an ensemble of light curves of HT Cas. The fast response of the white dwarf to the increase in mass transfer rate, the expansion rate of the accretion disc at the same time, and the relative amplit
Although flickering is one of the fundamental signatures of accretion, it is also the most poorly understood aspect of the accretion processes. A promising step towards a better undestanding of flickering consists in using the eclipse mapping method
We report on the investigation of the spatial distribution of the flickering sources in the dwarf nova V2051 Oph with eclipse mapping techniques. Low-frequency flickering originates in the gas stream and is related to the mass transfer process, where
We report the analysis of time-series of infrared $JHK_s$ photometry of the dwarf nova V2051 Oph in quiescence with eclipse mapping techniques to investigate structures and the spectrum of its accretion disc. The light curves after removal of the ell
We report on high-speed eclipse photometry of the dwarf nova V2051 Oph while it was in a low brightness state, at B ~ 16.2 mag. In comparison to the average IUE spectra, the ultraviolet continuum and emission lines appear reduced by factors of, respe