ﻻ يوجد ملخص باللغة العربية
In cold molecular clouds submillimetre emission lines are excited by the ambient radiation field. The pumping is dominated by the cosmic microwave background (CMB). It is usual in molecular line radiative transfer modelling to simply assume that this is the only incident radiation field. In this paper, a molecular line transport code and a dust radiative transfer code are used to explore the effects of the inclusion of a full interstellar radiation field (ISRF) on a simple test molecular cloud. It is found that in many galactic situations, the shape and strength of the line profiles that result are robust to variations in the ISRF and thus that in most cases, it is safe to adopt the CMB radiation field for the molecular line transport calculations. However, we show that in two examples, the inclusion of a plausible radiation field can have a significant effect on the the line profiles. Firstly, in the vicinity of an embedded massive star, there will be an enhanced far infared component to the radiation field. Secondly, for molecular clouds at large redshift, the CMB temperature increases and this of course also alters the radiation field. In both of these cases, the line profiles are weakened significantly compared to a cloud exposed to a standard radiation field. Therefore this effect should be accounted for when investigating prestellar cores in massive star forming regions and when searching for molecular clouds at high redshift.
The evolution of star-forming core analogues undergoing inside-out collapse is studied with a multi-point chemodynamical model which self-consistently computes the abundance distribution of chemical species in the core. For several collapse periods t
Optical stellar polarimetry in the Perseus molecular cloud direction is known to show a fully mixed bi-modal distribution of position angles across the cloud (Goodman et al. 1990). We study the Gaia trigonometric distances to each of these stars and
Two aspects of filamentary molecular cloud evolution are addressed: (1) Exploring analytically the role of the environment for the evolution of filaments demonstrates that considering them in isolation (i.e. just addressing the fragmentation stabilit
We revisit the interpretation of blue-excess molecular lines from dense collapsing cores, considering recent numerical results that suggest prestellar core collapse occurs from the outside-in, and not inside-out. We thus create synthetic molecular-li
We use N-body simulations to investigate the radial dependence of the density and velocity dispersion in cold dark matter (CDM) halos. In particular, we explore how closely Q rho/sigma^3, a surrogate measure of the phase-space density, follows a powe