ترغب بنشر مسار تعليمي؟ اضغط هنا

FUSE search for 10^5-10^6 K gas in the rich clusters of galaxies Abell 2029 and Abell 3112

60   0   0.0 ( 0 )
 نشر من قبل Alain Lecavelier des Etangs
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent Chandra and XMM X-ray observations of rich clusters of galaxies have shown that the amount of hot gas which is cooling below ~1 keV is generally more modest than previous estimates. Yet, the real level of the cooling flows, if any, remains to be clarified by making observations sensitive to different temperature ranges. As a follow-up of the FUSE observations reporting a positive detection of the OVI doublet at 1032, 1038 Angstrom in the cluster of galaxies Abell 2597, which provided the first direct evidence for ~3x10^5 K gas in a cluster of galaxies, we have carried out sensitive spectroscopy of two rich clusters, Abell 2029 and Abell 3112 (z~0.07) located behind low HI columns. In neither of these clusters could we detect the OVI doublet, yielding fairly stringent limits of ~27 Msun yr-1 (Abell 2029) and ~25 Msun yr-1 (Abell 3112) to the cooling flow rates using the 10^5-10^6 K gas as a tracer. The non-detections support the emerging picture that the cooling-flow rates are much more modest than deduced from earlier X-ray observations.



قيم البحث

اقرأ أيضاً

Using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) the COS Science Team has conducted a high signal-to-noise survey of 14 bright QSOs. In a previous paper (Savage et al. 2014) these far-UV spectra were used to discover 14 warm ($T > 10^5$ K) absorbers using a combination of broad Lyalpha and O VI absorptions. A reanalysis of a few of this new class of absorbers using slightly relaxed fitting criteria finds as many as 20 warm absorbers could be present in this sample. A shallow, wide spectroscopic galaxy redshift survey has been conducted around these sight lines to investigate the warm absorber environment, which is found to be spiral-rich galaxy groups or cluster outskirts with radial velocity dispersions of sigma = 250-750 km/s. While 2sigma evidence is presented favoring the hypothesis that these absorptions are associated with the galaxy groups and not with the individual, nearest galaxies, this evidence has considerable systematic uncertainties and is based on a small sample size so it is not entirely conclusive. If the associations are with galaxy groups, the observed frequency of warm absorbers (dN/dz = 3.5-5 per unit redshift) requires them to be very large (~1 Mpc in radius at high covering factor). Most likely these warm absorbers are interface gas clouds whose presence implies the existence of a hotter ($T sim 10^{6.5}$ K), diffuse and probably very massive ($>10^{11}~M_{odot}$) intra-group medium which has yet to be detected directly.
We report ALMA Early Science observations of the Abell 1835 brightest cluster galaxy (BCG) in the CO (3-2) and CO (1-0) emission lines. We detect $5times 10^{10}~rm M_odot$ of molecular gas within 10 kpc of the BCG. Its ensemble velocity profile widt h of $sim 130 ~rm km~s^{-1}$ FWHM is too narrow for the molecular cloud sto be supported in the galaxy by dynamic pressure. The gas may instead be supported in a rotating, turbulent disk oriented nearly face-on. Roughly $10^{10}~rm M_odot$ of molecular gas is projected $3-10 ~rm kpc$ to the north-west and to the east of the nucleus with line of sight velocities lying between $-250 ~rm km~s^{-1}$ to $+480 ~rm km~s^{-1}$ with respect to the systemic velocity. The high velocity gas may be either inflowing or outflowing. However, the absence of high velocity gas toward the nucleus that would be expected in a steady inflow, and its bipolar distribution on either side of the nucleus, are more naturally explained as outflow. Star formation and radiation from the AGN are both incapable of driving an outflow of this magnitude. If so, the molecular outflow may be associated a hot outflow on larger scales reported by Kirkpatrick and colleagues. The molecular gas flow rate of approximately $200~rm M_odot ~yr^{-1}$ is comparable to the star formation rate of $100-180~rm M_odot ~yr^{-1}$ in the central disk. How radio bubbles would lift dense molecular gas in their updrafts, how much gas will be lost to the BCG, and how much will return to fuel future star formation and AGN activity are poorly understood. Our results imply that radio-mechanical (radio mode) feedback not only heats hot atmospheres surrounding elliptical galaxies and BCGs, it is able to sweep higher density molecular gas away from their centers.
We present a detection of a broad Ly-alpha absorber (BLA) with a matching O VI line in the nearby universe. The BLA is detected at z = 0.01028 in the high S/N spectrum of Mrk 290 obtained using the Cosmic Origins Spectrograph. The Ly-alpha absorption has two components, with b(HI) = 55 +/- 1 km/s and b(HI) = 33 +/- 1 km/s, separated in velocity by v ~ 115 km/s. The O VI, detected by FUSE at z = 0.01027, has a b(OVI) = 29 +/- 3 km/s and is kinematically well aligned with the broader HI component. The different line widths of the BLA and OVI suggest a temperature of T = 1.4 x 10^5 K in the absorber. The observed line strength ratios and line widths favor an ionization scenario in which both ion-electron collisions and UV photons contribute to the ionization in the gas. Such a model requires a low-metallicity of -1.7 dex, ionization parameter of log U ~ -1.4, a large total hydrogen column density of N(H) ~ 4 x 10^19 cm^-2, and a path length of 400 kpc. The line of sight to Mrk 290 intercepts at the redshift of the absorber, a megaparsec scale filamentary structure extending over 20 deg in the sky, with several luminous galaxies distributed within 1.5 Mpc projected distance from the absorber. The collisionally ionized gas in this absorber is likely tracing a shock-heated gaseous structure, consistent with a few different scenarios for the origin, including an over-dense region of the WHIM in the galaxy filament or highly ionized gas in the extended halo of one of the galaxies in the filament. In general, BLAs with metals provide an efficient means to study T ~ 10^5 - 10^6 K gas in galaxy halos and in the intergalactic medium. A substantial fraction of the baryons missing from the present universe is predicted to be in such environments in the form of highly ionized plasma.
Galaxy clusters might be sources of TeV gamma rays emitted by high-energy protons and electrons accelerated by large scale structure formation shocks, galactic winds, or active galactic nuclei. Furthermore, gamma rays may be produced in dark matter p article annihilation processes at the cluster cores. We report on observations of the galaxy clusters Perseus and Abell 2029 using the 10 m Whipple Cherenkov telescope during the 2003-2004 and 2004-2005 observing seasons. We apply a two-dimensional analysis technique to scrutinize the clusters for TeV emission. In this paper we first determine flux upper limits on TeV gamma-ray emission from point sources within the clusters. Second, we derive upper limits on the extended cluster emission. We subsequently compare the flux upper limits with EGRET upper limits at 100 MeV and theoretical models. Assuming that the gamma-ray surface brightness profile mimics that of the thermal X-ray emission and that the spectrum of cluster cosmic rays extends all the way from thermal energies to multi-TeV energies with a differential spectral index of -2.1, our results imply that the cosmic ray proton energy density is less than 7.9% of the thermal energy density for the Perseus cluster.
Abell 2029 is one of the most studied clusters due to its proximity (z=0.07), its strong X-ray brightness and its giant cD galaxy which is one of the biggest stellar aggregates we know. We present here the first weak lensing mass reconstruction of th is cluster made from a deep I-band image of 28.5x28.5 centered on the cluster cD galaxy. This preliminary result allows us already to show the shape similarities between the cD galaxy and the cluster itself, suggesting that they form actually a single structure. We find a lower estimate of the total mass of 1.8 10^14 h^-1 solar masses within a radius of 0.3 h^-1 Mpc. We finally compute the mass-to-cD-light ratio and its evolution as a function of scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا