ﻻ يوجد ملخص باللغة العربية
Spectroscopy of the Crab nebula along different slit directions reveals the 3 dimensional structure of the optical nebula. On the basis of the linear radial expansion result first discovered by Trimble (1968), we make a 3D model of the optical emission. Results from a limited number of slit directions suggest that optical lines originate from a complicated array of wisps that are located in a rather thin shell, pierced by a jet. The jet is certainly not prominent in optical emission lines, but the direction of the piercing is consistent with the direction of the X-ray and radio jet. The shells effective radius is ~ 79 seconds of arc, its thickness about a third of the radius and it is moving out with an average velocity 1160 km/s.
We present 3.6, 4.5, 5.8, 8.0, 24, and 70 micron images of the Crab Nebula obtained with the Spitzer Space Telescope IRAC and MIPS cameras, Low- and High-resolution Spitzer IRS spectra of selected positions within the nebula, and a near-infrared grou
We present broadband (3 -- 78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power-law in this energy band, spatially resolved spe
The Nuclear Compton Telescope (NCT) is a balloon-borne Compton telescope designed for the study of astrophysical sources in the soft gamma-ray regime (200 keV--20 MeV). NCTs ten high-purity germanium crossed-strip detectors measure the deposited ener
We present a hyperspectral cube of the Crab Nebula obtained with the imaging Fourier transform spectrometer SITELLE on the Canada-France-Hawaii telescope. We describe our techniques used to deconvolve the 310 000 individual spectra (R = 9 600) contai
The remarkable Crab Nebula is powered by an energetic pulsar whose relativistic wind interacts with the inner parts of the Supernova Remnant SN1054. Despite low-intensity optical and X-ray variations in the inner Nebula, the Crab has been considered