ترغب بنشر مسار تعليمي؟ اضغط هنا

The Lifetimes of Molecular Cloud Cores: What is the Role of the Magnetic Field?

48   0   0.0 ( 0 )
 نشر من قبل Enrique Vazquez-Semadeni
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the lifetimes and evolution of dense cores formed as turbulent density fluctuations in magnetized, isothermal molecular clouds. We consider numerical simulations in which we measure the cores magnetic criticality and Jeans stability in relation to the magnetic criticality of their ``parent clouds (the numerical boxes). In subcritical boxes, dense cores do not form, and collapse does not occur. In supercritical boxes, some cores collapse, being part of larger clumps that are supercritical from the start, and whose central, densest regions (the cores) are initially subcritical, but rapidly become supercritical, presumably by accretion along field lines. Numerical artifacts are ruled out. The time scales for cores to go from subcritical to supercritical and then collapse are a few times the core free-fall time, $tfc$. Our results suggest that cores are out-of-equilibrium, transient structures, rather than quasi-magnetostatic configurations.



قيم البحث

اقرأ أيضاً

We discuss the lifetimes and evolution of clumps and cores formed as turbulent density fluctuations in nearly isothermal molecular clouds. In the non-magnetic case, clumps are unlikely to reach a hydrostatic state, and instead are expected to either proceed directly to collapse, or else ``rebound towards the mean pressure and density of the parent cloud. Rebounding clumps are delayed in their re-expansion by their self-gravity. From a simple virial calculation, we find re-expansion times of a few free-fall times. In the magnetic case, we present a series of driven-turbulence, ideal-MHD isothermal numerical simulations in which we follow the evolution of clumps and cores in relation to the magnetic criticality of their ``parent clouds (the numerical boxes). In subcritical boxes, magnetostatic clumps do not form. A few moderately-gravitationally bound clumps form which however are dispersed by the turbulence in < 1.3 Myr. An estimate of the ambipolar diffusion (AD) time scale t_AD in these cores gives t_AD > 1.3 Myr, only slightly longer than the dynamical times. In supercritical boxes, some cores become locally supercritical and collapse in typical times ~ 1 Myr. We also observe longer-lived supercritical cores that however do not collapse because they are smaller than the local Jeans length. Fewer clumps and cores form in these simulations than in their non-magnetic counterpart. Our results suggest that a) A fraction of the cores may not form stars, and may correspond to some of the observed starless cores. b) Cores may be out-of-equilibrium structures, rather than quasi-magnetostatic ones. c) The magnetic field may help reduce the star formation efficiency by reducing the probability of core formation, rather than by significantly delaying the collapse of individual cores.
We review the role that magnetic field may have on the formation and evolution of molecular clouds. After a brief presentation and main assumptions leading to ideal MHD equations, their most important correction, namely the ion-neutral drift is descr ibed. The nature of the multi-phase interstellar medium (ISM) and the thermal processes that allows this gas to become denser are presented. Then we discuss our current knowledge of compressible magnetized turbulence, thought to play a fundamental role in the ISM. We also describe what is known regarding the correlation between the magnetic and the density fields. Then the influence that magnetic field may have on the interstellar filaments and the molecular clouds is discussed, notably the role it may have on the prestellar dense cores as well as regarding the formation of stellar clusters. Finally we briefly review its possible effects on the formation of molecular clouds themselves. We argue that given the magnetic intensities that have been measured, it is likely that magnetic field is i) responsible of reducing the star formation rate in dense molecular cloud gas by a factor of a few, ii) strongly shaping the interstellar gas by generating a lot of filaments and reducing the numbers of clumps, cores and stars, although its exact influence remains to be better understood. % by a factor on the order of at least 2. Moreover at small scales, magnetic braking is likely a dominant process that strongly modifies the outcome of the star formation process. Finally, we stress that by inducing the formation of more massive stars, magnetic field could possibly enhance the impact of stellar feedback.
A brief summary is presented of our current knowledge of the structure of cold molecular cloud cores that do not contain protostars, sometimes known as starless cores. The most centrally condensed starless cores are known as pre-stellar cores. These cores probably represent observationally the initial conditions for protostellar collapse that must be input into all models of star formation. The current debate over the nature of core density profiles is summarised. A cautionary note is sounded over the use of such profiles to ascertain the equilibrium status of cores. The magnetic field structure of pre-stellar cores is also discussed.
123 - M. Juvela 2011
We investigate the uncertainties affecting the temperature profiles of dense cores of interstellar clouds. In regions shielded from external ultraviolet radiation, the problem is reduced to the balance between cosmic ray heating, line cooling, and th e coupling between gas and dust. We show that variations in the gas phase abundances, the grain size distribution, and the velocity field can each change the predicted core temperatures by one or two degrees. We emphasize the role of non-local radiative transfer effects that often are not taken into account, for example, when modelling the core chemistry. These include the radiative coupling between regions of different temperature and the enhanced line cooling near the cloud surface. The uncertainty of the temperature profiles does not necessarily translate to a significant error in the column density derived from observations. However, depletion processes are very temperature sensitive and a two degree difference can mean that a given molecule no longer traces the physical conditions in the core centre.
Low-energy cosmic rays are the dominant source of ionization for molecular cloud cores. The ionization fraction, in turn, controls the coupling of the magnetic field to the gas and hence the dynamical evolution of the cores. The purpose of this work is to compute the attenuation of the cosmic-ray flux rate in a cloud core taking into account magnetic focusing, magnetic mirroring, and all relevant energy loss processes. We adopt a standard cloud model characterized by a mass-to-flux ratio supercritical by a factor of about 2 to describe the density and magnetic field distribution of a low-mass starless core, and we follow the propagation of cosmic rays through the core along flux tubes enclosing different amount of mass. We then extend our analysis to cores with different mass-to-flux ratios. We find that mirroring always dominates over focusing, implying a reduction of the cosmic-ray ionization rate by a factor of about 2-3 over most of a solar-mass core with respect to the value in the intercloud medium outside the core. For flux tubes enclosing larger masses the reduction factor is smaller, since the field becomes increasingly uniform at larger radii and lower densities. We also find that the cosmic-ray ionization rate is further reduced in clouds with stronger magnetic field, e.g. by a factor of about 4 for a marginally critical cloud. The magnetic field threading molecular cloud cores affects the penetration of low-energy cosmic rays and reduces the ionization rate by a factor 3-4 depending on the position inside the core and the magnetization of the core.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا